PROGRAMME

Times are in CEST (UTC +2)

 

Invited Talks (IS): 30+10 min

Contributed Talks: 15 + 5  min

Posters: 3 + 2 min

 

The abstract booklet is available here.


Monday 16 May
Chairperson: Michael Sterzik
13:45 - 14:00 Conference Welcome
14:00 - 14:40 Pierre-Philippe Mathieu (IS)The Rise of Artificial Intelligence for Earth Observation (AI4EO)
14:40 - 15:00 Marcos López-Caniego:  ESA Virtual Assistant in ESASky: enabling archival data exploration via natural language processing
15:00 - 15:15         BREAK
15:15 - 15:55 Emille Ishida (IS)Fink: incorporating expert knowledge in machine learning applications for large scale sky surveys
15:55 - 16:15 Jeroen Audenaert:  An all-sky stellar variability machine learning classification framework for TESS and PLATO
16:15 - 16:30         BREAK
16:30 - 16:50 John F. Suárez Pérez:   Assessing the quality of massive spectroscopic surveys with unsupervised machine learning
Tuesday 17 May
Chairperson: Paula Sánchez Sáez
09:00 - 09:20 Michele Delli Veneri:  Data Cleaning and Detection and Characterization of Sources in ALMA data through Deep Learning
09:20 - 09:40 Juan Gil:  Log Analysis as an Operational Tool at Paranal Observatory
09:40 - 10:00 Michael Johnson:  VAMPIRA - Automated Provenance Generation for Astronomical Pipelines
10:00 - 10:15  BREAK
10:15 - 10:35 Stefan Schuldt:  Machine learning investigations for LSST: Strong lens mass modeling and photo-z estimation
10:35 - 11:15 Elena Cuoco (IS):  Artificial Intelligence application to Gravitational wave transient signals
11:15 - 11:30  BREAK
11:30 - 11:50 Caroline Heneka:  Networks Learning the Universe: From 3D (hydrogen tomography) to 1D (classification of spectra)
11:50 - 12:10 Sandor Kruk:  Using deep learning and crowdsourcing to survey asteroid trails in ESA's Hubble data archive
12:10 - 14:00              LUNCH
Chairperson: Vicente Navarro
14:00 - 14:40 Camille Avestruz (IS):  AI Enabled Data Exploitation for Astrophysics and Cosmology
14:40 - 15:00 Daniel Muthukrishna:  Real-Time Detection of Anomalies in Large-scale transient surveys
15:00 - 15:15         BREAK
15:15 - 15:55 Maggie Lieu (IS)Pushing the limits of Astronomy using AI
15:55 - 16:15 Carter Rhea:  A New Paradigm in X-ray Spectral Analysis
16:15 - 16:30         BREAK
16:30 - 17:00 POSTER SESSION 1 
Wednesday 18 May
Chairperson: Michelle Lochner
09:00 - 09:20 Maxime Quesnel:  A physics-based deep learning approach for focal-plane wavefront sensing
09:20 - 09:40 Bartomeu Pou Mulet:  A Non-Linear Control Method with Reinforcement Learning for Adaptive Optics with Pyramid Sensors
09:40 - 10:00 Jalo Nousiainen:  Advances in model-based reinforcement learning for adaptive optics control
10:00 - 10:15         BREAK
10:15 - 10:55 Wolfgang Kerzendorf (IS)AI for proposal handling and selection
10:55 - 11:15 Siouar Bensaid:  Segmentation of the Galactic ISM Filaments using Deep Learning and enriched HiGAL catalogue
11:15 - 11:30         BREAK
11:30 - 12:00 POSTER SESSION 2 
Thursday 19 May
Chairperson: Camille Avestruz
09:00 - 09:40 Michelle Lochner (IS)Enabling New Discoveries with Machine Learning
09:40 - 10:00 Paula Sanchez Saez:  Searching for different AGN populations in massive datasets with Machine Learning
10:00 - 10:15         BREAK
10:15 - 10:55 Vicente Navarro (IS)ESA Data Exploitation Platforms: Accelerating Space and Navigation Science
10:55 - 11:15 Vanessa Moss:  The quest for an autonomous ASKAP: automating the next-generation of survey telescopes
11:15 - 11:30         BREAK
11:30 - 11:50 Sam Sweere:  Deep Learning-Based Super-Resolution and De-Noising for XMM-Newton EPIC-pn
11:50 - 12:10 Laura Manduchi:  Can Neural Networks be used to understand X-ray spectra?
12:10 - 14:00              LUNCH
Chairperson: Thomas Klein
14:00 - 14:20 Amelia Yu:  Previously Undiscovered Exoplanets Detected with Deep Learning
14:20 - 15:00 María Francisca Yañez Castillo (IS):  We are facing a double transformation: Digital and Sustainable
15:00 - 15:15         BREAK
15:15 - 15:55 Natalie Behara (IS)Moving Beyond Traditional KPIs: Data-Driven Performance Monitoring in Operations
15:55 - 16:15 Alessandro Terreri:  Neural Networks and PCA coefficients to identify and correct aberrations in Adaptive Optics
16:15 - 16:30         BREAK
16:30 - 16:50 Martino Romaniello:  Letting the data speak - The experience with running Deep Learning on the ESO Science Archive
16:50 - 17:10 Ignacio Toledo:  The ALMA Data Science Initiative: Building a Data-driven Organization to Improve Operations
Friday 20 May
Chairperson: Gaitee Hussain
09:00 - 09:40 François Lanusse (IS):  Going Beyond Common Deep Learning Limitations with Deep Probabilistic Modeling
09:40 - 10:00 Jason Spyromilio:  Why AI is wrong for apparatus calibration
10:00 - 10:15  BREAK
10:15 - 10:35 Claudia Comito:  The missing link between massive data and AI: parallel computing with Heat
10:35 - 10:55 Nick Cox:  EXPLORE - Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences
10:55 - 11:15 Srividya Subramanian:  Astrophysics with INODE
11:15 - 11:30  BREAK
11:30 - 12:10 Michelle Ntampaka (IS)ML for Astronomy: Cautionary Tales for the Community
12:10 - 12:30 Final comments (M. Sterzik/C. Arviset)

E-Posters

Session 1:

1. Miguel Doctor Yuste: EVA (ESA Virtual Assistant): The conversational AI platform for Space

2. Ali-Dib Mohamad:  Identification of craters and boulders with deep learning

3. Fiorenzo Stoppa: ASID-L. Fast Source Localization in Optical Images

4. Christophe Morisset: Machine learning methods applied to interstellar medium studies

5. Connor Bottrell: Unraveling galaxy merger histories with deep learning

6. Francesco Guarneri: QUBRICS: machine learning for searching bright, high-redshift quasars

 

Session 2:

7. Cristiano Sabiu: Machine Learning the nature of Dark Matter with 21cm tomography

8. Roland Szakacs: Detecting MgII Absorbers in Quasar Spectra: A Machine Learning Approach

9. Magda Arnaboldi: Enhanced discoverability and download of the ESO science data content via programmatic access

10. Maja Jabłońska: Differentiable stellar disk integration

11. Suhyun Shin:The survey for low-luminosity quasars at z~5 using artificial neural network and Bayesian statistics

12. MD Redyan Ahmed: Investigating the efficiency of the SPIIR pipeline in O3 offline Gravitational Wave search