Press Release

ALMA and MUSE Detect Galactic Fountain

6 November 2018

Observations by ALMA and data from the MUSE spectrograph on ESO’s VLT have revealed a colossal fountain of molecular gas powered by a black hole in the brightest galaxy of the Abell 2597 cluster — the full galactic cycle of inflow and outflow powering this vast cosmic fountain has never before been observed in one system.

A mere one billion light-years away in the nearby galaxy cluster known as Abell 2597, there lies a gargantuan galactic fountain. A massive black hole at the heart of a distant galaxy has been observed pumping a vast spout of cold molecular gas into space, which then rains back onto the black hole as an intergalactic deluge. The in- and outflow of such a vast cosmic fountain has never before been observed in combination, and has its origin in the innermost 100 000 light-years of the brightest galaxy in the Abell 2597 cluster.

“This is possibly the first system in which we find clear evidence for both cold molecular gas inflow toward the black hole and outflow or uplift from the jets that the black hole launches,” explained Grant Tremblay of the Harvard-Smithsonian Center for Astrophysics and former ESO Fellow, who led this study. “The supermassive black hole at the centre of this giant galaxy acts like a mechanical pump in a fountain.”

Tremblay and his team used ALMA to track the position and motion of molecules of carbon monoxide within the nebula. These cold molecules, with temperatures as low as minus 250–260°C, were found to be falling inwards to the black hole. The team also used data from the MUSE instrument on ESO’s Very Large Telescope to track warmer gas — which is being launched out of the black hole in the form of jets.

“The unique aspect here is a very detailed coupled analysis of the source using data from ALMA and MUSE,” Tremblay explained. “The two facilities make for an incredibly powerful combination.”

Together these two sets of data form a complete picture of the process; cold gas falls towards the black hole, igniting the black hole and causing it to launch fast-moving jets of incandescent plasma into the void. These jets then spout from the black hole in a spectacular galactic fountain. With no hope of escaping the galaxy’s gravitational clutches, the plasma cools off, slows down, and eventually rains back down on the black hole, where the cycle begins anew.

This unprecedented observation could shed light on the life cycle of galaxies. The team speculates that this process may be not only common, but also essential to understanding galaxy formation. While the inflow and outflow of cold molecular gas have both previously been detected, this is the first time both have been detected within one system, and hence the first evidence that the two make up part of the same vast process.

Abell 2597 is found in the constellation Aquarius, and is named for its inclusion in the Abell catalogue of rich clusters of galaxies. The catalogue also includes such clusters as the Fornax cluster, the Hercules cluster, and Pandora’s cluster.

More information

This research was presented in a paper entitled “A Galaxy-Scale Fountain of Cold Molecular Gas Pumped by a Black Hole”, which appeared in The Astrophysical Journal.

The team was composed of G. R. Tremblay (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA; Yale Center for Astronomy and Astrophysics, Yale University, New Haven, USA), F. Combes (LERMA, Observatoire de Paris, Sorbonne University, Paris, France), J. B. R. Oonk (ASTRON, Dwingeloo, the Netherlands; Leiden Observatory, the Netherlands), H. R. Russell (Institute of Astronomy, Cambridge University, UK), M. A. McDonald (Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, USA), M. Gaspari (Department of Astrophysical Sciences, Princeton University, USA), B. Husemann (Max-Planck-Institut für Astronomie, Heidelberg, Germany), P. E. J. Nulsen (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA; ICRAR, University of Western Australia, Crawley, Australia), B. R. McNamara (Physics & Astronomy Department, Waterloo University, Canada), S. L. Hamer (CRAL, Observatoire de Lyon, Université Lyon, France), C. P. O’Dea (Department of Physics & Astronomy, University of Manitoba, Winnipeg, Canada; School of Physics & Astronomy, Rochester Institute of Technology, USA), S. A. Baum (School of Physics & Astronomy, Rochester Institute of Technology, USA; Faculty of Science, University of Manitoba, Winnipeg, Canada), T. A. Davis (School of Physics & Astronomy, Cardiff University, UK), M. Donahue (Physics and Astronomy Department, Michigan State University, East Lansing, USA), G. M. Voit (Physics and Astronomy Department, Michigan State University, East Lansing, USA), A. C. Edge (Department of Physics, Durham University, UK), E. L. Blanton (Astronomy Department and Institute for Astrophysical Research, Boston University, USA), M. N. Bremer (H. W. Wills Physics Laboratory, University of Bristol, UK), E. Bulbul (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), T. E. Clarke (Naval Research Laboratory Remote Sensing Division, Washington, DC, USA), L. P. David (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), L. O. V. Edwards (Physics Department, California Polytechnic State University, San Luis Obispo, USA), D. Eggerman (Yale Center for Astronomy and Astrophysics, Yale University, New Haven, USA), A. C. Fabian (Institute of Astronomy, Cambridge University, UK), W. Forman (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), C. Jones (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), N. Kerman (Yale Center for Astronomy and Astrophysics, Yale University, New Haven, USA), R. P. Kraft (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), Y. Li (Center for Computational Astrophysics, Flatiron Institute, New York, USA; Department of Astronomy, University of Michigan, Ann Arbor, USA), M. Powell (Yale Center for Astronomy and Astrophysics, Yale University, New Haven, USA), S. W. Randall (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), P. Salomé (LERMA, Observatoire de Paris, Sorbonne University, Paris, France), A. Simionescu (Institute of Space and Astronautical Science [ISAS], Kanagawa, Japan), Y. Su (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), M. Sun (Department of Physics and Astronomy, University of Alabama in Huntsville, USA), C. M. Urry (Yale Center for Astronomy and Astrophysics, Yale University, New Haven, USA), A. N. Vantyghem (Physics & Astronomy Department, Waterloo University, Canada), B. J. Wilkes (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA) and J. A. ZuHone (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Grant Tremblay
Harvard-Smithsonian Center for Astrophysics
Cambridge, USA
Tel: +1 207 504 4862
Email: grant.tremblay@cfa.harvard.edu

Francoise Combes
LERMA, Paris Observatory
Paris, France
Email: francoise.combes@obspm.fr

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Email: pio@eso.org

Connect with ESO on social media

About the Release

Release No.:eso1836
Name:Abell 2597
Type:Local Universe : Galaxy : Grouping : Cluster
Facility:Atacama Large Millimeter/submillimeter Array, Very Large Telescope
Science data:2018ApJ...865...13T

Images

ALMA and MUSE Detect Galactic Fountain
ALMA and MUSE Detect Galactic Fountain
Digitized Sky Survey image around Abell 2597
Digitized Sky Survey image around Abell 2597
Abell 2597 in the Constellation of Aquarius
Abell 2597 in the Constellation of Aquarius

Videos

ESOcast 182 Light: ALMA and MUSE Detect Galactic Fountain (4K UHD)
ESOcast 182 Light: ALMA and MUSE Detect Galactic Fountain (4K UHD)
Zooming in on a Galactic Fountain
Zooming in on a Galactic Fountain

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.