Behind the black hole

Stories from those working behind the scenes on the biggest discovery of the year

19 April 2019
What you’ll discover in this blog post:
  • How it feels to take the first ever image of the black hole
  • A personal account of the most exciting part of this project so far
  • Some of the emotions a scientist went through whilst getting to this result
Imaging a black hole is no easy task. The Event Horizon Telescope (EHT) project involved over 200 scientists from around the world, and without their hard work, dedication, and imagination, such a feat would never have been possible. Three of these scientists talk about how it feels to be part of an international collaboration that has recently turned the seemingly-impossible into a reality.

Sera Markoff is a member of the EHT Science Council, co-coordinator of the Multiwavelength Working Group, co-coordinator of Proposals Working Group and leads a research group that contributed to theoretical modelling and interpretation.
Credit: ESO/BlackHoleCam /Radboud University/ Cristian Afker/Cafker Productions. Produced by: Cristian Afker/Cafker Productions /ESO.

Name: Sera Markoff

Job: Professor of Theoretical High Energy Astrophysics, University of Amsterdam, the Netherlands

Roles in the EHT project: Member of the Science Council, co-coordinator of the Multiwavelength Working Group, co-coordinator of Proposals Working Group and leads a research group that contributed to theoretical modelling and interpretation.

To really “look it in the eye” is fascinating but also a bit maddening!

What has been the most exciting part of this project so far?

Without a doubt, the most exciting part of the project so far was to make the big discovery — to show the world that black holes really exist, and to quite literally be able to gaze down into that sinkhole. I have been working on modeling black holes in one way or another for most of my career, and I think that one gets a bit blasé at some point, since we use the concept of black holes all the time without having ever actually seen one directly. To really “look it in the eye” is fascinating but also a bit maddening! And now I dream of seeing what it looks like close up, without the distortions of a telescope in between! I want to understand how such a thing can be possible, when our understanding of physics at the moment is not complete and cannot yet explain gravity or black holes at a quantum level.

I also found working with a big team focused on a single, major goal very exciting. There were so many researchers, particularly PhD and postdoctoral students who dedicated a huge amount of time to making this project a success, and I am very happy to see it pay off for them, since it will boost their careers massively.

Heino Falcke, of Radboud University in the Netherlands, coined the term “black hole shadow” and was the scientists that originally came up with the idea of imaging a black hole using millimetre-wavelength Very Large Baseline Interferometry (VLBI). Heino is currently chair of the EHT science council and co-Principal Investigator of the European Research Council Synergy Grant BlackHoleCam that co-funded the EHT.
Credit: ESO/BlackHoleCam /Radboud University/ Cristian Afker/Cafker Productions. Produced by: Cristian Afker/Cafker Productions /ESO.

Name: Heino Falcke

Job: Professor of Astroparticle Physics and Radio Astronomy, Radboud University, the Netherlands

Roles in the EHT project: Coiner of the term “black hole shadow” and proposer to try to image a black hole using millimetre-wavelength Very Large Baseline Interferometry (VLBI). Chair of the EHT science council and co-Principal Investigator (together with Luciano Rezzolla and Michael Kramer) of the European Research Council Synergy Grant BlackHoleCam that co-funded the EHT.

A black hole could actually magnify itself due to the bending of light by its own mass

How did it feel when you saw the first image of the black hole?

Twenty-five years ago, back in the pioneering days of millimetre-wavelength VLBI, I was doing my PhD at the Max-Planck Institute in Bonn. Modeling the black hole at the centre of the Milky Way, I realised that light of millimetre-wavelength or below would be emitted from close to the black hole’s event horizon. Alas, black holes are surprisingly tiny, so the event horizon seemed too small to see, even with an Earth-sized telescope.

But then, one lonely afternoon in the library, I stumbled across an article that described how a black hole would look much bigger when illuminated from behind. I was electrified. I hadn’t considered gravitational lensing — that a black hole could actually magnify itself due to the bending of light by its own mass. This would make it look much bigger!

I worked with two other scientists, Eric Agol and Fulvio Melia, to calculate what a black hole would look like if it was engulfed by a glowing transparent region and, lo and behold, we found that a dark area would appear, surrounded by a bright ring that would be just large enough to be detected. We called the dark area the “shadow of the black hole” and claimed it could be detected within the following ten years!

Well, not quite. But 19 years later my own PhD student, Sara Issaoun, showed me the first raw data from the EHT project. The plot was a complicated and incomplete one-dimensional mathematical transformation of an image. But doing the mathematical inversion in my head, as we have all learned to do during this project, my heart started beating faster: this could be a ring!

Weeks later, we could finally make the actual image and there it was — the shadow inside a ring. All these years after predicting that it would be possible to image a black hole in this way, this huge collaboration of scientists had finally done so! For an hour I felt like I was hovering above the ground, but then it hit me that we still had many rough months to go before we could be certain. I sent up a brief “thank you” prayer to heaven and continued the day with a smile on my face.

Sara Issaoun, of Radboud University in the Netherlands observed using one of the eight EHT telescopes, the Submillimeter Telescope (SMT). Sara also contributed to data processing and calibration, as well as the imaging efforts.
Credit: ESO/BlackHoleCam /Radboud University/ Cristian Afker/Cafker Productions. Produced by: Cristian Afker/Cafker Productions /ESO.

Name: Sara Issaoun

Job: Graduate student at Radboud University, the Netherlands

Roles in EHT project: EHT observing staff at the Submillimeter Telescope (SMT), core contributor in EHT data processing and calibration, active contributor in imaging efforts

The room filled with applause and laughter and general awe at being part of this incredible project

Describe some of the emotions you went through whilst getting to this result.

Although I’ve gone through many emotions during this project, the most common is probably exhaustion! During our 2017 observing campaign at the SMT in Arizona, I was excited to be carrying out observations, hearing the equipment roar as blinking green lights indicated the successful collection of data. And the weather was excellent, meaning that we could observe on multiple days in a row. The downside to this? Back-to-back 16 hour observing shifts, with preparation time in between, and very, very little sleep. Combined with the high altitude, this made it an exhausting expedition. But then I saw the messages rolling in from Chile, the South Pole, Spain, Mexico and Hawaii, which made me feel part of a truly historic moment; all these telescopes and people, all staring towards the centre of Messier 87 — just one galaxy in amongst several trillion that exist in the Universe.

After we packed up our recordings and drove down the mountain, it took a few months before we got the results of our observations. But when we heard that the telescope had worked well, and that we had worked well, I felt extreme relief.

But it also meant that our data was ready for calibration, which involved a lot more hard work, exhaustion and stress. I will never forget the day when I first saw the fully calibrated data; the quality was so high that it took only seconds for me to understand that this could lead to a groundbreaking image. Four imaging teams worked separately to create the final image, and I was part of one of these teams.

A mere few minutes after I started processing the data, I saw the ring structure appear. It was jaw-dropping, even thrilling. Six weeks of hard work passed, during which we perfected our image and improved our understanding of the data, before all the imaging teams met at a workshop in July 2018. We were all extremely anxious to see if everyone had seen the same structure. Once again, it turned out that everyone saw the same thing, even though we had all been using different software. This was real. This was it. The room filled with applause and laughter and general awe at being part of this incredible project. We were fully aware of the huge amount of work ahead of us, to understand what we were seeing and convince the rest of the community, but that moment was really special.

Numbers in this article

16 Length of the observing shifts that Sara Issaoun worked on (in hours)
19 Number of years that passed between Heino Falcke predicting that a black hole could be imaged, and the actual image being produced
>200 Number of people involved in the EHT project
2018 Year that the EHT imaging teams met up to share their results
Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.