Press Release

XXL Hunt for Galaxy Clusters

Observations from ESO telescopes provide crucial third dimension in probe of Universe’s dark side

15 December 2015

ESO telescopes have provided an international team of astronomers with the gift of the third dimension in a plus-sized hunt for the largest gravitationally bound structures in the Universe — galaxy clusters. Observations by the VLT and the NTT complement those from other observatories across the globe and in space as part of the XXL survey — one of the largest ever such quests for clusters.

Galaxy clusters are massive congregations of galaxies that host huge reservoirs of hot gas — the temperatures are so high that X-rays are produced. These structures are useful to astronomers because their construction is believed to be influenced by the Universe’s notoriously strange components — dark matter and dark energy. By studying their properties at different stages in the history of the Universe, galaxy clusters can shed light on the Universe’s poorly understood dark side.

The team, consisting of over 100 astronomers from around the world, started a hunt for the cosmic monsters in 2011. Although the high-energy X-ray radiation that reveals their location is absorbed by the Earth’s atmosphere, it can be detected by X-ray observatories in space. Thus, they combined an ESA XMM-Newton survey — the largest time allocation ever granted for this orbiting telescope — with observations from ESO and other observatories. The result is a huge and growing collection of data across the electromagnetic spectrum [1], collectively called the XXL survey.

The main goal of the XXL survey is to provide a well-defined sample of some 500 galaxy clusters out to a distance when the Universe was half its current age,” explains XXL principal investigator Marguerite Pierre of CEA,  Saclay, France.

The XMM-Newton telescope imaged two patches of sky — each one hundred times the area of the full Moon — in an attempt to discover a huge number of previously unknown galaxy clusters. The XXL survey team have now released their findings in a series of papers using the 100 brightest clusters discovered [2].

Observations from the EFOSC2 instrument installed on the New Technology Telescope (NTT), along with the FORS instrument attached to ESO’s Very Large Telescope (VLT), also were used to carefully analyse the light coming from galaxies within these galaxy clusters. Crucially, this allowed the team to measure the precise distances to the galaxy clusters, providing the three-dimensional view of the cosmos required to perform precise measurements of dark matter and dark energy [3].

The XXL survey is expected to produce many exciting and unexpected results, but even with one fifth of the final expected data, some surprising and important findings have already appeared.

One paper reports the discovery of five new superclusters — clusters of galaxy clusters — adding to those already known, such as our own, the Laniakea Supercluster.

Another reports followup observations of one particular galaxy cluster (informally known as XLSSC-116), located over six billion light-years away [4]. In this cluster unusually bright diffuse light was observed using MUSE on the VLT.

This is the first time that we are able to study in detail the diffuse light in a distant galaxy cluster, illustrating the power of MUSE for such valuable studies,” explained co-author Christoph Adami of the Laboratoire d'Astrophysique, Marseille, France.

The team have also used the data to confirm the idea that galaxy clusters in the past are scaled down versions of those we observe today — an important finding for the theoretical understanding of the evolution of clusters over the life of the Universe.

The simple act of counting galaxy clusters in the XXL data has also confirmed a strange earlier result  — there are fewer distant clusters than expected based on predictions from the cosmological parameters measured by ESA’s Planck telescope. The reason for this discrepancy is unknown, however the team hope to get to the bottom of this cosmological curiosity with the full sample of clusters in 2017.

These four important results are just a foretaste of what is to come in this massive survey of some of the most massive objects in the Universe.

Notes

[1] The XXL survey has combined archival data as well as new observations of galaxy clusters covering the wavelength range from 1 × 10—4 μm (X-ray, observed with XMM) to more than 1 metre (observed with the Giant Metrewave Radio Telescope [GMRT]).

[2] The galaxy clusters reported in the thirteen papers are found at redshifts between z = 0.05 and z = 1.05, which correspond to when the Universe was approximately 13 and 5.7 billion years old, respectively.

[3] Probing the galaxy clusters required their precise distances to be known. While approximate distances — photometric redshifts — can be measured by analysing their colours at different wavelengths, more accurate spectroscopic redshifts are needed. Spectroscopic redshifts were also sourced from archival data, as part of the VIMOS Public Extragalactic Redshift Survey (VIPERS), the VIMOS-VLT Deep Survey (VVDS) and the GAMA survey.

[4] This galaxy cluster was found to be at a redshift of z = 0.543.

More information

A description of the survey, and some of the early science results, will be presented in a series of papers to appear in the journal Astronomy & Astrophysics on 15 December 2015.

A full listing of the XXL team can be found here.

XXL is an international project based around an XMM Very Large Programme surveying two 25 square degrees extragalactic fields at a depth of ~5 × 1015 erg cm2 s1 in the [0.52] keV band for point-like sources. The XXL website is found here. Multi-band information and spectroscopic follow-up of the X-ray sources are obtained through a number of survey programmes is summarised here.

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Marguerite Pierre
CEA
Saclay, France
Email: marguerite.pierre@cea.fr

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Connect with ESO on social media

About the Release

Release No.:eso1548
Name:XXL-South Field
Type:Early Universe : Galaxy : Grouping : Cluster
Early Universe : Cosmology
Facility:ESA XMM-Newton, New Technology Telescope, Very Large Telescope
Instruments:EFOSC2, FORS2
Science data:2016A&A...592A...7A
2016A&A...592A...6P
2016A&A...592A...4L
2016A&A...592A...2P
2016A&A...592A...1P

Images

X-ray image of the XXL-South Field
X-ray image of the XXL-South Field
Composite of x-ray and visible light views of a distant cluster of galaxies
Composite of x-ray and visible light views of a distant cluster of galaxies
Visible light view of a distant galaxy cluster discovered in the XXL survey
Visible light view of a distant galaxy cluster discovered in the XXL survey
Composite of x-ray and visible light views of a distant cluster of galaxies
Composite of x-ray and visible light views of a distant cluster of galaxies

Image Comparisons

Comparison of a distant galaxy cluster in X-ray and visible light
Comparison of a distant galaxy cluster in X-ray and visible light

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.