AMBER

Astronomical Multi-BEam combineR

AMBER, along with MIDI, is an instrument that was installed on the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory and has now been decommissioned. Interferometry is the technique of combining beams of light collected by several telescopes from an astronomical object to observe and analyse the object with a high degree of detail. By using several telescopes, we get the same detail as if we used one giant mirror — something that is not always possible to construct. AMBER, however, did not directly make images of the objects it observed: instead each pair of telescopes produces interference fringes whose brightness and contrast give some information about the shape of the object.

"The main purpose of AMBER is to study the close environments of astronomical objects, helping us to constrain the physical sizes and geometry of the sources," said Sridhar Rengaswamy, one of the Instrument Scientists for AMBER, before the instrument was decommissioned. "AMBER’s ability to detect very fine detail has helped us to discover large bubbles of gas moving in the atmosphere of the red supergiant star Betelgeuse, as well as showing us a disc surrounding a very young, massive star for the first time. AMBER observations have also led to the discovery that the yellow hypergiant star HR5171 A is the largest of its kind, being two to three times bigger than expected."

Whereas MIDI uses either two Unit Telescopes (UTs) or two Auxiliary Telescopes (ATs), AMBER could combine the light from a configuration of three telescopes simultaneously. This increases the efficiency of observations as more baselines — the lines between two of the telescopes (reaching 130 metres in length for the UTs and 200 metres for the ATs) — can be used at once. The more baselines we use, the more information we acquire about an object, because each baseline corresponds to observing a particular part of the object. You can think about this in musical terms: the object represents the complete song, and each baseline represents the individual notes that make up the piece. The more baselines we have, the more notes we get, and the more complete our copy of the song is.

“Because of the Earth’s rotation, the apparent distance and angle of the baselines as seen from the astronomical source we observe are constantly changing over the course of the night,” explains Rebekka Grellman, Instrument Fellow for AMBER. “This means that we don't just get three points with three baselines, but many more (depending on the position on the object on the sky and the time we have for the observation). This, in the end, is important if you really want to reconstruct images, which of course is only possible with a huge number of observations.”

AMBER operated in the near-infrared part of the spectrum between 1.0 and 2.4 micrometres, with the aid of a fringe tracker by the name of FINITO (Fringe-tracking Instrument of NIce and TOrino) which results in clearer fringes. Whereas the MACAO adaptive optics system compensates for atmospheric turbulence, FINITO ensures that the incoming light beams from each telescope reach the detector at the same time by sending a signal to the delay lines of the VLTI to move by a given amount.

The spectroscopic capabilities of AMBER allowed astronomers to differentiate between individual spectral lines (the signatures that tell us which elements astronomical objects are made up of)  and then distinguish the region from where they are emitted. This is known as spectro-interferometry. “For example, if you observe one particular line that has been emitted from atomic hydrogen atoms around young stars, you can see whether it is originating from the surrounding dusty disc, an outflow, or from the stellar surface itself and thus create different wind models,” explains Rebekka. “Or you could look at the spectral lines being emitted in the innermost regions of the disc to see which molecules are produced there.”

Science highlights with AMBER

  • Best ever image of a star’s surface and atmosphere (eso 1726)
  • Highest resolution image of Eta Carinae (eso1637)
  • AMBER discovers yellow hypergiant star, one of the ten largest stars ever detected (eso1409)
  • Dusty surprise around a giant black hole (eso1327)
  • Sharp view of Betelgeuse shows how supermassive stars lose mass (eso0927)
  • Massive stars shown to form in the same way as smaller stars (eso1029)

The columns marked UT1, UT2, and UT4 show data from three of the individual 8.2-metre Unit Telescopes, which were then combined interferometrically. The resultant fringes are shown in the column marked VLTI. The bright feature is the Paschen-α emission line from atomic hydrogen gas, redshifted to a wavelength of 2.17 µm due to the quasar’s distance of about two billion light-years. This image is a rare example of a five-second exposure that reveals the fringes. In real use, many much shorter 0.3-second observations must be made.The new blind observation mode allows these shorter exposures to be successfully combined.

AMBER

The authoritative technical specifications as offered for astronomical observations are available from the Science Operation page.

Site: Paranal (now decommissioned)
Telescope: Very Large Telescope Interferometer
Focus:  
Type: Interferometer and spectrograph
Wavelength coverage: Near-infrared, 1.0–2.4 μm
Spatial resolution: Interferometric
Spectral resolution: R = 30, R = 1500, R = 12 000
First light date: March 2004 (eso0410)
Images taken with the instrument: Link
Images of the instrument: Link

Videos of the instrument:

Link

Press Releases with the instrument: Link
Data papers:

Link

ESO data citation policy

Science goals:  

Consortium:

ESO

France: Observatoire de la Côte d'Azur (OCA), Nice; UNSA, Nice; Laboratoire d'Astrophysique de Grenoble (LAOG), Grenoble; IRCOM, Limoges; ONERA,

Paris; Observatoire de Lyon, Lyon

Germany: Max-Planck Institute for Radio Astronomy, Bonn

Italy: Osservatorio Astrofisico di Arcetri, Firenze

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.