The many faces of galaxies

Learn to unlock the secrets of galaxy evolution

30 de Julho de 2021
What you’ll discover in this blog post:
  • What are the three main sources of light in galaxies
  • How astronomers use different telescopes and instruments to observe them
  • How to understand the physics behind colorful images of galaxies
Images of galaxies, with their complex shapes and rich colours, are always jaw-dropping. But what do they actually tell us? In this article you will learn how to “read” these images much like an art expert does with paintings, allowing you to appreciate them at a whole new level.

Galaxies are complex systems of stars, gas and dust swirling together to the tune of gravity [1]. These three ingredients emit light at different colors or wavelengths; most of this radiation is invisible to the human eye, but it can be detected with specialized instruments. By assigning colors to these data and combining them we can produce impressive images of galaxies . This article is intended to help you understand the physics behind these images, so that you can appreciate them under a completely different new light.

Ingredient # 1: Stars

Not all stars are born equal. When a gas cloud fragments and collapses, the resulting stars span a large range of properties. Some –– very few –– are several times more massive than our Sun, very luminous and hot, and prominently blue. But most stars have just a fraction of our Sun's mass and are much fainter, colder and redder.

Another key difference between high- and low-mass stars is their lifespan. Massive blue stars, despite having more nuclear fuel, burn through it very quickly, resulting in very short lifetimes of just a few million years. Our Sun, in comparison, is half way through its 10 billion-year-long life. And less massive redder stars live 10-100 times longer than that.

Therefore, color gives us a good idea of ​​the average age of the stars in galaxies: since massive blue stars are very short-lived, blue colors are a sign post of recent star formation.

This is clearly illustrated in this image taken with the FORS2 instrument at ESO’s Very Large Telescope (VLT) in northern Chile. NGC 470, the spiral galaxy to the lower right, is much bluer than NGC 474, the elliptical galaxy to the upper left, indicating that stars in NGC 470 are, on average, younger than those in its elliptical neighbour.

Moreover, we can also see colour variations within the spiral galaxy itself, whose outskirts are bluer than the inner regions. This is in fact very common in spiral galaxies, and tells us that these galaxies grow from inside out.

Ingredient #2: Gas

The gas out of which stars form is mostly hydrogen. The intense light of young massive stars excites the electrons in hydrogen atoms, and when these electrons eventually cascade back to lower energies they emit light at very specific wavelengths, producing so-called emission lines.

The most prominent emission line in star-forming regions is called H-alpha (Hα), and has a characteristic red colour. One way to spot star-forming regions in galaxies is to use a filter that only lets through Hα light, like in this VLT image of the spiral galaxy NGC 4303, where star-forming regions pop up in red.

But this technique has a drawback. First, hydrogen atoms emit light at wavelengths other than Hα. Secondly, star-forming regions contain other elements besides hydrogen, each one with its own set of emission lines. Therefore, to properly map these stellar nurseries one has to observe them through various filters targeting different colours, which can be very time consuming.

Enter MUSE, another instrument at ESO’s VLT. Instead of capturing an image, MUSE produces something called data-cubes, which can be thought of as ensembles of thousands of different images at different colours, taken all at once. This allows astronomers to accurately map many physical properties of galaxies: the chemical makeup of the gas, the age and composition of the stars, and even the speed at which the gas and stars are moving, all with a single observation.

handle
Drag the slider to compare MUSE (left) and ALMA (right) data of NGC 4303, which probe recent star formation and molecular gas, respectively.
Credit: ESO/ALMA (ESO/NAOJ/NRAO)/PHANGS

Hα observations reveal gas lit up by already ongoing star formation, but is it possible to see gas before it transforms into stars? The answer is yes, but for that we need radio-telescopes instead of optical ones.

Most of the hydrogen in galaxies is in the form of individual atoms, but when gas clouds collapse and become denser, pairs of hydrogen atoms bond to each other forming molecules. Molecular hydrogen is the raw material out of which stars form, and we can map its distribution with the Atacama Large Millimeter/submillimeter Array (ALMA), an array of 66 antennas in northern Chile of which ESO is a partner [2].

The interactive comparison to the right allows you to overlay the ALMA map of molecular gas in NGC 4303 over the MUSE one showing star-forming regions. The ALMA image tells us where star formation could potentially happen; the MUSE one shows where it actually happens. Comparing both maps allows astronomers to figure out which mechanisms boost or inhibit the conversion of gas into stars.

Ingredient #3: Dust

As stars evolve, they fuse hydrogen into helium and heavier elements, which are eventually injected into the interstellar medium when stars die. Some of these heavy atoms will end up polluting subsequent generations of stars, maybe even forming planets around them. Others will remain floating in space, coalescing into tiny grains of dust that obscure our view of the stars.

We said earlier that blue and red regions in galaxies indicate young and old stars, respectively. But dust complicates this, because it absorbs and scatters blue light more efficiently than red light, making stars look redder, just like the Sun does when it's close to the horizon.

Luckily, there is a way to figure out how much reddening is due to dust alone. When dust absorbs starlight it warms up, and by observing this thermal emission we can work out how much dust there is.

Hot dust grains emit infrared radiation, which is largely blocked by the Earth’s atmosphere, but can be easily observed with space telescopes. Colder dust grains, on the other hand, can be detected from the ground using radio-telescopes like ALMA or the Atacama Pathfinder Experiment (APEX), a 12-metre antenna close to ALMA and operated by ESO. The image to the right shows APEX observations of cold dust in a nebula within our own galaxy, overlaid in orange over an image of the same region taken in visible light. Note how dust appears as dark filaments in the optical image, but glows in the APEX one.

Mixing all the ingredients together

While the basic aspects of star formation and evolution are well understood, there are still many unanswered questions: why do stars form more efficiently in some regions of galaxies than in others? How does this affect the evolution of galaxies as a whole? The MUSE and ALMA images in this post were taken as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) project, which aims to answer those and other questions.

While we await those answers, we hope this crash course on galaxy imaging will help you appreciate these spectacular images under a whole new light.

Notes

[1] While these are the three luminous components of galaxies, the gravitational interaction that keeps them together comes mostly from dark matter, which doesn’t absorb or emit any light.

[2] Molecular hydrogen is actually very hard to observe directly, as it paints prominent spectral lines. Instead, astronomers use carbon monoxide as a proxy for it; it is much easier to observe, and it closely follows the distribution of the more elusive molecular hydrogen.

Biography Juan Carlos Muñoz Mateos

Juan Carlos Muñoz Mateos is Media Officer at ESO in Garching and editor of the ESO blog. He completed his PhD in astrophysics at Complutense University in Madrid (Spain). Previously he worked for several years at ESO in Chile, combining his research on galaxy evolution with duties at Paranal Observatory.

Envie-nos os seus comentários!
Subscreva-se para receber notícias do ESO em português
Accelerated by CDN77
Termos e Condições
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.