Press Release
Discovery of a Satellite Around a Near-Earth Asteroid
22 July 1997
In the course of the major observational programme of asteroids by the Institute of Planetary Exploration of the German Aerospace Research Establishment (DLR) [1] in Berlin, two of the staff astronomers, Stefano Mottola and Gerhard Hahn, have discovered a small satellite (moon) orbiting the asteroid (3671) Dionysus.
The new measurements were obtained with the DLR CCD Camera attached at the 60-cm Bochum telescope at the ESO La Silla Observatory in Chile.
This is only the second known case of an asteroid with a moon.
Moons and planets
Until recently, natural satellites were only known around the major planets . The Moon orbits the Earth, there are two tiny moons around Mars, each of the giant planets Jupiter, Saturn, Uranus and Neptune has many more, and even the smallest and outermost, Pluto, is accompanied by one [2].
However, the new discovery now strengthens the belief of many astronomers that some, perhaps even a substantial number of the many thousands of minor planets (asteroids) in the solar system may also possess their own moons. The first discovery of a satellite orbiting an asteroid was made by the NASA Galileo spacecraft, whose imagery, obtained during a fly-by of asteroid (253) Ida in August 1993, unveiled a small moon that has since been given the name Dactyl.
(3671) Dionysus: an Earth-crossing asteroid
In the framework of the DLR asteroid monitoring programme, image sequences are acquired to measure an asteroid's brightness variations caused by the changing amount of sunlight reflected from the asteroid's illuminated surface as it spins, due to its irregular shape. The brightness variations may be used to derive the asteroid's rotational properties, such as speed of rotation and spin axis orientation.
Asteroid Dionysus [3] was put on the observing list because it belongs to a special class of asteroids, the members of which occasionally come very close to the Earth and have a small, but non-negligible chance of colliding with our planet. Most of these objects move in highly elliptical orbits that lie partly inside, partly outside that of the Earth. They are accordingly referred to as `Earth-crossing asteroids' or Apollo-type asteroids , after the proto-type of this group, (1862) Apollo, that was discovered in 1932 by Karl Reinmuth in Heidelberg [4].
The orbital characteristics of Dionysus lead to moderately close approaches to the Earth every 13 years, with the one in 1997 being the first since its discovery that is favourable for extensive observations. On July 6, 1997, it passed within 17 million km of our planet. At that time it was visible from the southern hemisphere with a moderately-sized telescope as a relatively fast-moving object.
The strange lightcurve of asteroid (3671) Dionysus
The first observations of the brightness of this asteroid in late May 1997 showed a `normal' two-maxima-two-minima lightcurve (change of brightness with time), typical of rotating non-spherical bodies. The period of rotation was 2.7 hours, i.e., this asteroid spins almost nine times as fast as the Earth.
However lightcurves observed on two subsequent nights were strikingly different from the previous ones. In both cases a deeper and shifted dip was seen, indicative of an attenuation - an additional dimming of the sunlight reflected by the asteroid.
The observers hypothesised that these lightcurve features were due to an eclipse by an unknown object moving in an orbit around (3671) Dionysus , thereby covering part of the illuminated surface of the asteroid at regular time intervals [5]. Fortunately, this hypothesis can be checked, because the phenomenon should then repeat itself periodically.
Accordingly, the DLR scientists made a prediction for the next occurences of dips in the lightcurve, based on the time difference between the two observed events.
Confirmation of the satellite
Contacts were made with observers located at other observatories, in order to secure lightcurve coverage over a longer period of time than was possible from La Silla alone. As a result, a series of lightcurve measurements were performed from June 3 to 9 in close cooperation with Petr Pravec and Lenka Sarounova working at the Ondrejov Observatory, near Prague in Czechia.
Luckily, the weather conditions were favourable at both sites and the dips in the lightcurve were indeed observed at the predicted times.
Based on the four well observed events, it was then possible to determine a period of 1.155 days for their occurence. Thus, the hypothesis of a satellite orbiting around Dionysus was confirmed. As a result, the International Astronomical Union's Minor Planet Center located in Cambridge (MA, USA) promptly gave a provisional designation to the new satellite - S/1997 (3671) 1 .
How big is Dionysus?
Meanwhile, in Hawaii, the world's largest infrared telescope was being trained on Dionysus to obtain information about its size and composition. Alan Harris, also a scientist from the DLR in Berlin, and John Davies from the Joint Astronomy Centre in Hilo, Hawaii, observed the thermal infrared radiation emitted by Dionysus with the 3.8-m United Kingdom Infrared Telescope (UKIRT) situated on Mauna Kea. Similar observations over a broader spectral range were also made by the European Space Agency's orbiting Infrared Space Observatory.
The thermal or "heat" radiation emitted by an asteroid depends on its size and the amount of sunlight it absorbs (darker bodies being warmer). In the case of Dionysus the measured radiation was much weaker than expected, indicating that the asteroid has an intrinsically bright (reflective) surface and is only about 1 km in diameter. This is much smaller than (253) Ida, the only other asteroid known to have a moon, which is about 60 km across.
Further observations
Eventually it should be possible to determine the orbital radius of the satellite, its size and the inclination of its orbital plane. In order to obtain the data necessary for these determinations, observations will be continued during the present period of good visibility that lasts until September-October 1997. For this reason the discoverers have initiated an international observation campaign devoted to the study of this intriguing object and now involving astronomers from many countries.
How common are such satellites?
Satellites in orbit around small bodies in the solar system - asteroids and cometary nuclei - have been predicted on theoretical grounds for a long time, even though there is no consensus among planetary scientists about the actual numbers of such systems.
Hints about the existence of asteroid satellites also come from the presence of double impact craters on the Moon and other planetary surfaces. This suggests that the projectiles forming these craters were `double' asteroids. Moreover, measurements obtained when an asteroid passes in front of a relatively bright star (a so-called 'occultation') have on a few occasions shown features which could be interpreted as due to the presence of a satellite. However, because of the difficult nature of such measurements, it has never been possible to draw unambiguous conclusions.
The existence of double asteroids was invoked earlier by Petr Pravec and Gerhard Hahn to explain the unusual features observed in the lightcurves of two other Earth-approaching asteroids 1991 VH and 1994 AW1 . In the case of Dionysus , however, it is possible to predict eclipse events and to confirm them by subsequent measurements.
There is therefore mounting evidence that asteroid binary systems might be comparatively common. Observational programmes like the present one by the DLR and Ondrejov groups will help to verify this possibility.
Notes
[1] This institute and its parent organisation are known in Germany as Institut fuer Planetenerkundung and Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR) .
[2] See eso9409.
[3] Asteroids are small solid planetary bodies revolving around the Sun in orbits that are mostly located in the so-called Main Asteroid Belt, confined between the orbits of Mars and Jupiter. Most of them are thought to be fragments derived from catastrophic, past collisions between larger asteroids. By mid-1997, the orbits of about 8000 asteroids in the solar system were sufficiently well known to allow them to be officially numbered by the rules of the International Astronomical Union. (3671) Dionysus was discovered in 1984 at the Palomar Observatory (California, USA) and is named after the Greek god of wine.
[4] The gravitational influence of the giant planet Jupiter can modify the orbits of asteroids located in particular regions of the Main Belt (the effect is refered to as 'orbital perturbations'). As a result, the orbit of an asteroid may `cross' that of a major planet, and eventually it may become a NEO , i.e. a near-Earth object. The orbits of NEO's are highly unstable over times comparable to the age of the solar system. This instability can result in a collision with one of the terrestrial (inner) planets, or with the Sun, or in the ejection of the asteroid out of the solar system. The present orbit of (3671) Dionysus is such that this object is not likely to collide with the Earth in the foreseeable future.
[5] The method of analyzing the lightcurve of Dionysus consists of `removing' (subtracting) the normal short-period brightness variations due to rotation of the asteroid and plotting the residuals against time. The residual lightcurve shows a clear resemblance with typical lightcurves of eclipsing binary stellar systems (in which two stars move around each other, producing mutual eclipses) and leads to a model of two bodies revolving around a common gravitational centre, in an orbital plane containing both the Earth and the Sun.
More information
Detailed and up-to-date information about (3671) Dionysus can be found in the Web at the following URL: http://earn.dlr.de/dionysus.
About the Release
Release No.: | eso9718 |
Legacy ID: | PR 08/97 |
Name: | (3671) Dionysus |
Type: | Solar System Solar System : Interplanetary Body : Asteroid |
Facility: | Bochum 0.61-metre telescope |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.