Press Release

Astronomers and Physicists Meet at ESO at the First Full-Scale International Conference on Supernova 1987A

8 July 1987

The first full-scale, international meeting about the bright Supernova 1987A in the Large Magellanic Cloud (LMC) was held at the European Southern Observatory in Garching near Munich on July 6 - 8, 1987. ESO was a natural meeting place in view of the many different observational studies of SN 1987A which have been carried out at the ESO La Silla observatory.

After three days of detailed discussions and long working sessions, the two hundred participants from all over the world concluded that much new and exciting knowledge has been gained from 4 1/2 months of intensive observational and theoretical studies of this unique object. Nobody doubted, however, that a major effort is still required to solve the many outstanding questions and in addition to providing an up-to-date review of current supernova research, the meeting also served to initiate future collaboration in the most urgent problem areas.

It was a historical occasion: for the first time satellite-, rocket-, balloon- and ground-based astronomical observations of an object outside the solar system were supplemented by the measurement of antineutrinos in several huge particle detectors, deep underground. Astronomers and physicists met on common ground to the mutual benefit, and it was obvious that both parties were pleased to learn from each other.

Summarizing the main results of this conference this afternoon, Professor Sidney van den Bergh of the Dominion Astrophysical Observatory, Victoria, Canada, was impressed by the width and accuracy of the presented data, and he added: “It has been tremendously exciting for all of us and we have experienced a textbook example of how the observational and organizational problems, associated with such a sudden event, can be overcome when all involved scientists join their forces within an open and extensive, international collaboration. We can be proud of what was achieved around SN 1987A and the efficient way in which it was done should serve as an enlightening example to people in other fields of human endeavour."

What have we learned so far from this supernova?

In general, there are four fields of astrophysics which are directly related to the interpretation of a supernova explosion:

  • stellar evolution theories which explain how a star reaches a stage of instability,
  • collapse physics which deals with the implosion of the inner parts of the star at which moment great quantities of neutrinos are emitted, and the creation of an extremely compact object (neutron star or black hole) at the centre,
  • explosion physics that trace the collision of the rapidly expanding, inner layers with the outer layers and the ejection of a shell of material into surrounding space, and
  • nucleosynthesis, the creation of heavy elements during the brief moment of extreme physical conditions which do not exist anywhere else in the Universe.

In all of these fields, some problems have now been solved, thanks to the availability of accurate, observational data from SN 1987A and one of the speakers commented that the theoretical interpretations have "taken a giant step forward". Nevertheless, there are still many unexplained features, which it is hoped to solve by continued interaction between observers and theoreticians.

There was general agreement that it was the star Sanduleak -69 202 which exploded. Stellar model calculations have shown that this star with a mass of 15 - 20 times that of the Sun may previously have developed into a red supergiant star, but also that shortly before the explosion, it would have lost a significant amount of mass and became a blue supergiant. The relatively low metallicity in the LMC may have contributed to this. It was reported that there is a relative overabundance of the elements helium and nitrogen in similar blue stars in the LMC. This points towards an advanced evolutionary state where carbon burning is taking place.

Supernova 1987A can be classified as of Type II, because its electromagnetic spectrum now (130 days after the explosion) rather closely ressembles a typical Type II spectrum; because of its very blue colour, immediately after the explosion and because of the overall shape of its lightcurve. However, it is not a typical Type II, since the brightness increased much slower than a normal Type II; since the colour very rapidly changed from blue to deep red; since the initial expansion velocity of the shell was extremely high, more than 30.000 km/s in some UV spectral lines, and also because the light maximum in mid-May is at least 1.5 magnitude fainter than what a normal Type II supernova would have reached.

From statistics in other galaxies, it is estimated that the supernova-rate in the LMC is about 1 per 500 years. We have therefore been very lucky to observe SN 1987A.

From polarimetric measurements and also recent IUE (International Ultraviolet Explorer, a joint NASA-ESA satellite) spectral data in the ultraviolet, it appears that the expanding envelope is now breaking into smaller fragments. This raises the hope that it shall soon become possible to learn what was left over at the centre of the explosion. From a comparison with the Crab Nebula and its associated pulsar (the remnants of a supernova explosion in the year 1054), as well as with other pulsars, it is estimated that a possible pulsar in SN 1987A may have a rotation period of about 10 milliseconds, but the apparent magnitude may not be brighter than 17. It is therefore necessary to wait until SN 1987A fades significantly, before optical observations of the pulsar may become feasible. It is quite likely that such a pulsar will manifest itself earlier in other wavelengths, like X-rays or radio.

High spatial resolution optical and infrared observations have given the first direct images of the expanding envelope and also a "mystery spot", an unidentified point-like object, at a distance of about 20 light-days from the supernova. It appears to be moving away from the supernova, but the nature of this object is still unknown. It must be related to the supernova since it is only 10 times fainter, i.e. at magnitude 5 or 6. If it had been there before the explosion, it would have been 100 times brighter than any other object in the LMC and would therefore have been discovered long ago.

An interesting prediction made at the meeting was that a very strong electro-magnetic pulse, released at the moment of the explosion, would have deposited enough energy (1 erg cm-2) in the so-called E-layer in the Earth's atmosphere that its effects should be observable. Atmospheric physicists have therefore begun to study the data recorded on February 23, 1987.

The undisputed highlight of the meeting was the presentation of detections of antineutrinos from SN 1987A which were made with particle detectors, located in the Mount Blanc tunnel between France and Italy, and also in Japan, USA and USSR. Never before has it been possible to observe directly the core collapse during a supernova explosion and it may be a long time before another supernova explodes sufficiently close to us to permit similar measurements.

It was not yet possible to decide definitively which of these events refer to the core collapse, but the exact coincidence in time between Japanese and US detections at 7:36 UT is taken as evidence in favour of these. The USSR detection is some 20 seconds later, but this might be due to a timing problem. But then, what does the Mont Blanc detection at 02:52 UT signify? Is it possible that there are other, dramatic events which produce neutrinos before the core collapse? Or does, after all, the Mount Blanc event correspond to the initial core collapse and the others to the transformation of a short-lived neutron star into a black hole?

Upper limits for the mass of the neutrino of the order of 15 to 20 eV were reported from an analysis of the arrival times of the individual particles; a zero mass can not be excluded.

Although the spectrum of SN 1987A is complicated, new computations of synthetic supernova spectra show reasonable agreement with what is actually observed. It has been possible to identify many atomic species, some of them highly ionized. Following an intensive exchange of experience, theoretical groups in several places announced that they will soon improve their computer programmes and that a fuller understanding of the violent events in the expanding envelope is within reach.

Up to 40 individual interstellar and intergalactic clouds have now been observed along the line of sight to the supernova and according to one group of astronomers, these unique observations indicate the existence of a "bridge of matter" between the LMC and the Milky Way Galaxy. It is also possible that some of the narrow absorption lines seen in the SN spectrum belong to the expanding shell of matter or even to the matter that may have been expelled during a phase of rapid mass loss, soon before the supernova explosion.

Scientists with access to X-ray and γ-ray detectors on satellites and balloons are on stand-by, waiting for the moment when the envelope becomes transparent. So far, attempts to observe the supernova in these wavelength regions have failed. Radio-observations were made during the first few days after the explosion, but then the signal faded. A new, possible radio-detection in Brazil in late June has not yet been confirmed, but Very-Long-Baseline-Interferometry (VLBI) observations will start in Australia as soon as the supernova again begins to radiate strongly at radio wavelengths. According to theory, this may happen any moment. These radio measurements, when compared with optical observations, will allow an accurate determination of the distance to the supernova. This distance, in turn, will be of great importance in correctly estimating the overall cosmical distance scale.

The ESO Conference has undoubtedly brought us a long way towards the unraveling of the secrets of supernova explosions, but as one of the participants said: “We leave this meeting in a great air of inspiration, but I also know that there is a lot of hard work to be done during the next many years!"

SN 1987A is still visible with the unaided eye. The magnitude is now 4.5.

Contacts

Richard West
ESO
Garching, Germany
Tel: +49 89 3200 6276
Email: information@eso.org

Connect with ESO on social media

About the Release

Release No.:eso8711
Legacy ID:PR 11/87
Name:Meeting, SN 1987A
Type:Unspecified : People : Other/General
Facility:Other

Images


Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.