Press Release
Largest Galaxy Proto-Supercluster Found
Astronomers using ESO’s Very Large Telescope uncover a cosmic titan lurking in the early Universe
17 October 2018
An international team of astronomers using the VIMOS instrument of ESO’s Very Large Telescope have uncovered a titanic structure in the early Universe. This galaxy proto-supercluster — which they nickname Hyperion — was unveiled by new measurements and a complex examination of archive data. This is the largest and most massive structure yet found at such a remote time and distance — merely 2 billion years after the Big Bang.
A team of astronomers, led by Olga Cucciati of Istituto Nazionale di Astrofisica (INAF) Bologna, have used the VIMOS instrument on ESO’s Very Large Telescope (VLT) to identify a gigantic proto-supercluster of galaxies forming in the early Universe, just 2.3 billion years after the Big Bang. This structure, which the researchers nicknamed Hyperion, is the largest and most massive structure to be found so early in the formation of the Universe [1]. The enormous mass of the proto-supercluster is calculated to be more than one million billion times that of the Sun. This titanic mass is similar to that of the largest structures observed in the Universe today, but finding such a massive object in the early Universe surprised astronomers.
“This is the first time that such a large structure has been identified at such a high redshift, just over 2 billion years after the Big Bang,” explained the first author of the discovery paper, Olga Cucciati [2]. “Normally these kinds of structures are known at lower redshifts, which means when the Universe has had much more time to evolve and construct such huge things. It was a surprise to see something this evolved when the Universe was relatively young!”
Located in the COSMOS field in the constellation of Sextans (The Sextant), Hyperion was identified by analysing the vast amount of data obtained from the VIMOS Ultra-deep Survey led by Olivier Le Fèvre (Aix-Marseille Université, CNRS, CNES). The VIMOS Ultra-Deep Survey provides an unprecedented 3D map of the distribution of over 10 000 galaxies in the distant Universe.
The team found that Hyperion has a very complex structure, containing at least 7 high-density regions connected by filaments of galaxies, and its size is comparable to nearby superclusters, though it has a very different structure.
“Superclusters closer to Earth tend to a much more concentrated distribution of mass with clear structural features,” explains Brian Lemaux, an astronomer from University of California, Davis and LAM, and a co-leader of the team behind this result. “But in Hyperion, the mass is distributed much more uniformly in a series of connected blobs, populated by loose associations of galaxies.”
This contrast is most likely due to the fact that nearby superclusters have had billions of years for gravity to gather matter together into denser regions — a process that has been acting for far less time in the much younger Hyperion.
Given its size so early in the history of the Universe, Hyperion is expected to evolve into something similar to the immense structures in the local Universe such as the superclusters making up the Sloan Great Wall or the Virgo Supercluster that contains our own galaxy, the Milky Way. “Understanding Hyperion and how it compares to similar recent structures can give insights into how the Universe developed in the past and will evolve into the future, and allows us the opportunity to challenge some models of supercluster formation,” concluded Cucciati. “Unearthing this cosmic titan helps uncover the history of these large-scale structures.”
Notes
[1] The moniker Hyperion was chosen after a Titan from Greek mythology, due to the immense size and mass of the proto-supercluster. The inspiration for this mythological nomenclature comes from a previously discovered proto-cluster found within Hyperion and named Colossus. The individual areas of high density in Hyperion have been assigned mythological names, such as Theia, Eos, Selene and Helios, the latter being depicted in the ancient statue of the Colossus of Rhodes.
The titanic mass of Hyperion, one million billion times that of the Sun, is 1015 solar masses in scientific notation.
[2] Light reaching Earth from extremely distant galaxies took a long time to travel, giving us a window into the past when the Universe was much younger. This wavelength of this light has been stretched by the expansion of the Universe over its journey, an effect known as cosmological redshift. More distant, older objects have a correspondingly larger redshift, leading astronomers to often use redshift and age interchangeably. Hyperion’s redshift of 2.45 means that astronomers observed the proto-supercluster as it was 2.3 billion years after the Big Bang.
More information
This research is published in the paper “The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS”, which will appear in the journal Astronomy & Astrophysics.
The team behind this result was composed of O. Cucciati (INAF-OAS Bologna, Italy), B. C. Lemaux (University of California, Davis, USA and LAM - Aix Marseille Université, CNRS, CNES, France), G. Zamorani (INAF-OAS Bologna, Italy), O.Le Fèvre (LAM - Aix Marseille Université, CNRS, CNES, France), L. A. M. Tasca (LAM - Aix Marseille Université, CNRS, CNES, France), N. P. Hathi (Space Telescope Science Institute, Baltimore, USA), K-G. Lee (Kavli IPMU (WPI), The University of Tokyo, Japan, & Lawrence Berkeley National Laboratory, USA), S. Bardelli (INAF-OAS Bologna, Italy), P. Cassata (University of Padova, Italy), B. Garilli (INAF–IASF Milano, Italy), V. Le Brun (LAM - Aix Marseille Université, CNRS, CNES, France), D. Maccagni (INAF–IASF Milano, Italy), L. Pentericci (INAF–Osservatorio Astronomico di Roma, Italy), R. Thomas (European Southern Observatory, Vitacura, Chile), E. Vanzella (INAF-OAS Bologna, Italy), E. Zucca (INAF-OAS Bologna, Italy), L. M. Lubin (University of California, Davis, USA), R. Amorin (Kavli Institute for Cosmology & Cavendish Laboratory, University of Cambridge, UK), L. P. Cassarà (INAF–IASF Milano, Italy), A. Cimatti (University of Bologna & INAF-OAS Bologna, Italy), M. Talia (University of Bologna, Italy), D. Vergani (INAF-OAS Bologna, Italy), A. Koekemoer (Space Telescope Science Institute, Baltimore, USA), J. Pforr (ESA ESTEC, the Netherlands), and M. Salvato (Max-Planck-Institut für Extraterrestrische Physik, Garching bei München, Germany)
ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.
Links
Contacts
Olga Cucciati
INAF Fellow – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna
Bologna, Italy
Email: olga.cucciati@inaf.it
Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Email: pio@eso.org
About the Release
Release No.: | eso1833 |
Name: | Hyperion |
Type: | Early Universe : Galaxy : Grouping : Supercluster |
Facility: | Very Large Telescope |
Instruments: | VIMOS |
Science data: | 2018A&A...619A..49C |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.