Kids

Press Release

Dark Matter Less Influential in Galaxies in Early Universe

VLT observations of distant galaxies suggest they were dominated by normal matter

15 March 2017

New observations indicate that massive, star-forming galaxies during the peak epoch of galaxy formation, 10 billion years ago, were dominated by baryonic or “normal” matter. This is in stark contrast to present-day galaxies, where the effects of mysterious dark matter seem to be much greater. This surprising result was obtained using ESO’s Very Large Telescope and suggests that dark matter was less influential in the early Universe than it is today. The research is presented in four papers, one of which will be published in the journal Nature this week.

We see normal matter as brightly shining stars, glowing gas and clouds of dust. But the more elusive dark matter does not emit, absorb or reflect light and can only be observed via its gravitational effects. The presence of dark matter can explain why the outer parts of nearby spiral galaxies rotate more quickly than would be expected if only the normal matter that we can see directly were present [1].

Now, an international team of astronomers led by Reinhard Genzel at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany have used the KMOS and SINFONI instruments at ESO’s Very Large Telescope in Chile [2] to measure the rotation of six massive, star-forming galaxies in the distant Universe, at the peak of galaxy formation 10 billion years ago.

What they found was intriguing: unlike spiral galaxies in the modern Universe, the outer regions of these distant galaxies seem to be rotating more slowly than regions closer to the core — suggesting there is less dark matter present than expected [3].

“Surprisingly, the rotation velocities are not constant, but decrease further out in the galaxies,” comments Reinhard Genzel, lead author of the Nature paper. “There are probably two causes for this. Firstly, most of these early massive galaxies are strongly dominated by normal matter, with dark matter playing a much smaller role than in the Local Universe. Secondly, these early discs were much more turbulent than the spiral galaxies we see in our cosmic neighbourhood.”

Both effects seem to become more marked as astronomers look further and further back in time, into the early Universe. This suggests that 3 to 4 billion years after the Big Bang, the gas in galaxies had already efficiently condensed into flat, rotating discs, while the dark matter halos surrounding them were much larger and more spread out. Apparently it took billions of years longer for dark matter to condense as well, so its dominating effect is only seen on the rotation velocities of galaxy discs today

This explanation is consistent with observations showing that early galaxies were much more gas-rich and compact than today’s galaxies.

The six galaxies mapped in this study were among a larger sample of a hundred distant, star-forming discs imaged with the KMOS and SINFONI instruments at ESO’s Very Large Telescope at the Paranal Observatory in Chile. In addition to the individual galaxy measurements described above, an average rotation curve was created by combining the weaker signals from the other galaxies. This composite curve also showed the same decreasing velocity trend away from the centres of the galaxies. In addition, two further studies of 240 star forming discs also support these findings.

Detailed modelling shows that while normal matter typically accounts for about half of the total mass of all galaxies on average, it completely dominates the dynamics of galaxies at the highest redshifts.

Notes

[1] The disc of a spiral galaxy rotates over a timescale of hundreds of millions of years. Spiral galaxy cores have high concentrations of stars, but the density of bright matter decreases towards their outskirts. If a galaxy’s mass consisted entirely of normal matter, then the sparser outer regions should rotate more slowly than the dense regions at the centre. But observations of nearby spiral galaxies show that their inner and outer parts actually rotate at approximately the same speed. These “flat rotation curves ” indicate that spiral galaxies must contain large amounts of non-luminous matter in a dark matter halo surrounding the galactic disc.

[2] The data analysed were obtained with the integral field spectrometers KMOS and SINFONI at ESO’s Very Large Telescope in Chile in the framework of the KMOS3D and SINS/zC-SINF surveys. It is the first time that such a comprehensive study of the dynamics of a large number of galaxies spanning the redshift interval from z~0.6 to 2.6, or 5 billion years of cosmic time, has been carried out.

[3] This new result does not call into question the need for dark matter as a fundamental component of the Universe or the total amount. Rather it suggests that dark matter was differently distributed in and around disc galaxies at early times compared to the present day.

More information

This research was presented in a paper entitled “Strongly baryon dominated disk galaxies at the peak of galaxy formation ten billion years ago”, by R. Genzel et al., to appear in the journal Nature.

The team is composed of R. Genzel (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; University of California, Berkeley, USA), N.M. Förster Schreiber (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), H. Übler (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), P. Lang (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), T. Naab (Max-Planck-Institut für Astrophysik, Garching, Germany), R. Bender (Universitäts-Sternwarte Ludwig-Maximilians-Universität, München, Germany; Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), L.J. Tacconi (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), E. Wisnioski (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), S.Wuyts (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; University of Bath, Bath, UK), T. Alexander (The Weizmann Institute of Science, Rehovot, Israel), A. Beifiori (Universitäts-Sternwarte Ludwig-Maximilians-Universität, München, Germany; Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), S.Belli (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), G. Brammer (Space Telescope Science Institute, Baltimore, USA), A.Burkert (Max-Planck-Institut für Astrophysik, Garching, Germany; Max-Planck-Institut für extraterrestrische Physik, Garching, Germany) C.M. Carollo (Eidgenössische Technische Hochschule, Zürich, Switzerland), J. Chan (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), R. Davies (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), M. Fossati (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; Universitäts-Sternwarte Ludwig-Maximilians-Universität, München, Germany), A. Galametz (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; Universitäts-Sternwarte Ludwig-Maximilians-Universität, München, Germany), S. Genel (Center for Computational Astrophysics, New York, USA), O. Gerhard (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), D. Lutz (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), J.T. Mendel (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; Universitäts-Sternwarte Ludwig-Maximilians-Universität, München, Germany), I. Momcheva (Yale University, New Haven, USA), E.J. Nelson (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; Yale University, New Haven, USA), A. Renzini (Vicolo dell'Osservatorio 5, Padova, Italy), R.Saglia (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; Universitäts-Sternwarte Ludwig-Maximilians-Universität, München, Germany), A. Sternberg (Tel Aviv University, Tel Aviv, Israel), S. Tacchella (Eidgenössische Technische Hochschule, Zürich, Switzerland), K.Tadaki (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany) and D. Wilman (Universitäts-Sternwarte Ludwig-Maximilians-Universität, München, Germany; Max-Planck-Institut für extraterrestrische Physik, Garching, Germany)

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Reinhard Genzel
Director, Max-Planck-Institut für extraterrestrische Physik
Garching bei München, Germany
Tel: +49 89 30000 3280
Email: genzel@mpe.mpg.de

Natascha M. Forster Schreiber
Senior Scientist, Max-Planck-Institut für extraterrestrische Physik
Garching bei München, Germany
Tel: +49 89 30000 3524
Email: forster@mpe.mpg.de

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Connect with ESO on social media

About the Release

Release No.:eso1709
Name:Galaxies
Type:Early Universe : Galaxy : Type : Spiral
Facility:Very Large Telescope
Instruments:KMOS, SINFONI
Science data:2017Natur.543..397G
2017ApJ...842..121U
2017ApJ...840...92L
2016ApJ...831..149W

Images

Comparison of rotating disc galaxies in the distant Universe and the present day
Comparison of rotating disc galaxies in the distant Universe and the present day
Comparison of rotating disc galaxies in the distant Universe and the present day
Comparison of rotating disc galaxies in the distant Universe and the present day

Videos

ESOcast 100 Light: Dark Matter Less Influential in Early Universe (4K UHD)
ESOcast 100 Light: Dark Matter Less Influential in Early Universe (4K UHD)
Comparison of rotating disc galaxies in the distant Universe and the present day
Comparison of rotating disc galaxies in the distant Universe and the present day
Comparison of rotating disc galaxies in the distant Universe and the present day
Comparison of rotating disc galaxies in the distant Universe and the present day

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.