Press Release

All Systems Go for Highest Altitude Supercomputer

ALMA correlator turns many antennas into one giant telescope

21 December 2012

One of the most powerful supercomputers in the world has now been fully installed and tested at its remote, high altitude site in the Andes of northern Chile. This marks one of the major remaining milestones toward completion of the Atacama Large Millimeter/submillimeter Array (ALMA), the most elaborate ground-based telescope in history. The special-purpose ALMA correlator has over 134 million processors and performs up to 17 quadrillion operations per second, a speed comparable to the fastest general-purpose supercomputer in operation today.

The correlator is a critical component of ALMA, an astronomical telescope which is composed of an array of 66 dish-shaped antennas. The correlator’s 134 million processors continually combine and compare faint celestial signals received by the antennas in the ALMA array, which are separated by up to 16 kilometres, enabling the antennas to work together as a single, enormous telescope. The information collected by each antenna must be combined with that from every other antenna. At the correlator’s maximum capacity of 64 antennas [1] as many as 17 quadrillion calculations every second must be performed [2]. The correlator was built specifically for this task, but the number of calculations per second is comparable to the performance of the fastest general-purpose supercomputers in the world [3].

This unique computing challenge needed innovative design, both for the individual components and the overall architecture of the correlator,” says Wolfgang Wild, the European ALMA Project Manager, from ESO.

The initial design of the correlator, as well as its construction and installation, was led by the US National Radio Astronomy Observatory (NRAO), the lead North American partner in ALMA. The correlator project was funded by the US National Science Foundation, with contributions from ESO.

The completion and installation of the correlator is a huge milestone towards the fulfillment of North America’s share of the international ALMA construction project,” said Mark McKinnon, North American ALMA Project Director at NRAO. “The technical challenges were enormous, and our team pulled it off,” he added.

As the European partner in ALMA, ESO also provided a key part of the correlator: an entirely new and versatile digital filtering system conceived in Europe was incorporated into the initial NRAO design. A set of 550 state-of-the-art digital filter circuit boards was designed and built for ESO by the University of Bordeaux in France [4]. With these filters, the wavelengths of light which ALMA sees can be split up 32 times more finely than in the initial design, into ranges that can be finely tuned. “This vastly improved flexibility is fantastic; it lets us ‘slice and dice’ the spectrum of light that ALMA sees, so we can concentrate on the precise wavelengths needed for a given observation, whether it’s mapping the gas molecules in a star-forming cloud, or searching for some of the most distant galaxies in the Universe,” said Alain Baudry, from the University of Bordeaux, the European ALMA correlator team leader.

Another challenge was the extreme location. The correlator is housed in the ALMA Array Operations Site (AOS) Technical Building, the highest altitude high-tech building in the world. At 5000 metres, the air is thin, so twice the normal airflow is necessary to cool the machine, which draws some 140 kilowatts of power. In this thin air, spinning computer disk drives cannot be used, as their read/write heads rely on a cushion of air to stop them crashing into their platters. Seismic activity is common, so the correlator had to be designed to withstand the vibrations associated with earthquakes.

ALMA began science observations in 2011 with a partial array of antennas. A section of the correlator was already being used to combine the signals from the partial array, but now the full system is complete. The correlator is ready for ALMA to begin operating with a larger number of antennas, which will increase the sensitivity and image quality of the observations.

ALMA is nearing completion and will be inaugurated in March 2013.

Notes

[1] The ALMA correlator is one of two such systems in the ALMA complex. ALMA’s total of 66 antennas comprise a main array of 50 antennas (half provided by ESO, and half by NRAO) and an additional, complementary array of 16 antennas called the Atacama Compact Array (ACA), which is provided by the National Astronomical Observatory of Japan (NAOJ). A second correlator, built by the Fujitsu company and delivered by NAOJ, provides independent correlation of the 16 antennas in the ACA, except for times when select ACA antennas are combined with the 50 more widely dispersed main array antennas.

[2] 17 quadrillion = 17 000 000 000 000 000.

[3] The current record holder in the TOP500 list of general-purpose supercomputers is the Titan, from Cray Inc., which has been measured at 17.59 quadrillion floating point operations per second. Note that the ALMA correlator is a special-purpose supercomputer and is not eligible for this ranking.

[4] This work followed work on new concepts for the correlator, done by the University of Bordeaux in a consortium also involving ASTRON in the Netherlands, and the INAF–Osservatorio di Arcetri in Italy.

More information

ALMA, an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Alain Baudry
Laboratoire d'Astrophysique de Bordeaux, Université Bordeaux
Floirac, France
Tel: +33 5 57 77 61 62
Email: baudry@obs.u-bordeaux1.fr

Douglas Pierce-Price

Public Information Officer, European Southern Observatory

Garching bei München, Germany

Tel: +49 89 3200 6759
Email: dpiercep@eso.org

John Stoke
National Radio Astronomy Observatory (NRAO)
Charlottesville, USA
Tel: +1 434 244 6816
Email: jstoke@nrao.edu

Connect with ESO on social media

About the Release

Release No.:eso1253
Name:Atacama Large Millimeter/submillimeter Array
Type:Unspecified : Technology : Observatory : Facility
Facility:Atacama Large Millimeter/submillimeter Array

Images

Wide-angle view of the ALMA correlator
Wide-angle view of the ALMA correlator
A technician works on the ALMA correlator at 5000 metres elevation
A technician works on the ALMA correlator at 5000 metres elevation
Lights glowing on the ALMA correlator
Lights glowing on the ALMA correlator
The AOS Technical Building
The AOS Technical Building
State-of-the-art digital filter circuit boards for the ALMA correlator
State-of-the-art digital filter circuit boards for the ALMA correlator
Cabling for the ALMA correlator
Cabling for the ALMA correlator
Checking electronics on the ALMA correlator at 5000 metres elevation
Checking electronics on the ALMA correlator at 5000 metres elevation

Videos

ESOcast 51: All Systems Go for Highest Altitude Supercomputer
ESOcast 51: All Systems Go for Highest Altitude Supercomputer

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.