Kids

Press Release

ALMA Reveals Workings of Nearby Planetary System

12 April 2012

A new observatory still under construction has given astronomers a major breakthrough in understanding a nearby planetary system and provided valuable clues about how such systems form and evolve. Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that planets orbiting the star Fomalhaut must be much smaller than originally thought. This is the first published science result from ALMA in its first period of open observations for astronomers worldwide.

The discovery was made possible by exceptionally sharp ALMA images of a disc, or ring, of dust orbiting Fomalhaut, which lies about 25 light-years from Earth. It helps resolve a controversy among earlier observers of the system. The ALMA images show that both the inner and outer edges of the thin, dusty disc have very sharp edges. That fact, combined with computer simulations, led the scientists to conclude that the dust particles in the disc are kept within the disc by the gravitational effect of two planets — one closer to the star than the disc and one more distant [1].

Their calculations also indicated the probable size of the planets — larger than Mars but no larger than a few times the size of the Earth. This is much smaller than astronomers had previously thought. In 2008, a NASA/ESA Hubble Space Telescope image had revealed the inner planet, then thought to be larger than Saturn, the second largest planet in our Solar System. However, later observations with infrared telescopes failed to detect the planet.

That failure led some astronomers to doubt the existence of the planet in the Hubble image. Also, the Hubble visible-light image detected very small dust grains that are pushed outward by the star's radiation, thus blurring the structure of the dusty disc. The ALMA observations, at wavelengths longer than those of visible light, traced larger dust grains — about 1 millimetre in diameter — that are not moved by the star's radiation. They clearly reveal the disc's sharp edges and ringlike structure, which indicate the gravitational effect of two planets.

"Combining ALMA observations of the ring's shape with computer models, we can place very tight limits on the mass and orbit of any planet near the ring," said Aaron Boley (a Sagan Fellow at the University of Florida, USA) who was leader of the study. "The masses of these planets must be small; otherwise the planets would destroy the ring," he added. The small sizes of the planets explain why the earlier infrared observations failed to detect them, the scientists said.

The ALMA research shows that the ring's width is about 16 times the distance from the Sun to the Earth, and is only one-seventh as thick as it is wide. "The ring is even more narrow and thinner than previously thought," said Matthew Payne, also of the University of Florida.

The ring is about 140 times the Sun-Earth distance from the star. In our own Solar System, Pluto is about 40 times more distant from the Sun than the Earth. "Because of the small size of the planets near this ring and their large distance from their host star, they are among the coldest planets yet found orbiting a normal star," added Aaron Boley.

The scientists observed the Fomalhaut system in September and October of 2011, when only about a quarter of ALMA's planned 66 antennas were available. When construction is completed next year, the full system will be much more capable. Even in this Early Science phase, though, ALMA was powerful enough to reveal the telltale structure that had eluded earlier millimetre-wave observers.

"ALMA may be still under construction, but it is already the most powerful telescope of its kind. This is just the beginning of an exciting new era in the study of discs and planet formation around other stars", concludes ESO astronomer and team member Bill Dent (ALMA, Chile).

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Notes

[1] The effect of planets or moons in keeping a dust ring's edges sharp was first seen when the Voyager spacecraft flew by Saturn and made detailed images of that planet's ring system. In another example in our Solar System, one ring of the planet Uranus is confined sharply by the moons Cordelia and Ophelia, in exactly the manner the ALMA observers propose for the ring around Fomalhaut. The moons confining those planets' rings are dubbed "shepherding moons".

The moons or planets confining such dust rings do so through gravitational effects. A planet on the inside of the ring is orbiting the star more rapidly than the dust particles in the ring. Its gravity adds energy to the particles, pushing them outward. A planet on the ring's outside is moving more slowly than the dust particles, and its gravity decreases the energy of the particles, making them fall slightly inward.

More information

This research was presented in a paper, “Constraining the Planetary System of Fomalhaut Using High-Resolution ALMA Observations” by A. Boley et al. to appear in Astrophysical Journal Letters.

The team is composed of A. C. Boley (University of Florida, Gainesville, USA), M. J. Payne (University of Florida), S. Corder (North American ALMA Science Center, Charlottesville, USA), W. Dent (ALMA, Santiago, Chile), E. B. Ford (University of Florida) and M. Shabram (University of Florida).

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Aaron. C. Boley
University of Florida
Gainesville, USA
Tel: +1 352 294 1844
Email: aaron.boley@astro.ufl.edu

William Dent
Joint ALMA Observatory
Santiago, Chile
Tel: +56 2 467 6249
Cell: +56 9 827 9537
Email: wdent@alma.cl

Richard Hook
ESO Public Information Officer
Garching, Germany
Tel: +49 89 3200 6655
Email: rhook@eso.org

Dave Finley
Public Information Officer, National Radio Astronomy Observatory
Socorro, USA
Tel: +1 575 835 7302
Email: dfinley@nrao.edu

Masaaki Hiramatsu
Education & Public Outreach Officer, National Astronomical Observatory of Japan
Japan
Tel: +81 422 34 3900 ext.3150
Email: hiramatsu.masaaki@nao.ac.jp

William Garnier
Education and Public Outreach Officer, Joint ALMA Observatory
Santiago, Chile
Tel: +56 2 467 6119
Email: wgarnier@alma.cl

Connect with ESO on social media

About the Release

Release No.:eso1216
Name:Fomalhaut
Type:Milky Way : Star : Circumstellar Material
Milky Way : Star : Circumstellar Material : Disk : Protoplanetary
Facility:Atacama Large Millimeter/submillimeter Array
Science data:2012ApJ...750L..21B

Images

ALMA observes a ring around the bright star Fomalhaut
ALMA observes a ring around the bright star Fomalhaut
The bright star Fomalhaut in the constellation of Piscis Austrinus
The bright star Fomalhaut in the constellation of Piscis Austrinus
Wide-field view of the sky around the bright star Fomalhaut
Wide-field view of the sky around the bright star Fomalhaut
Planets shepherding material into a narrow ring around Fomalhaut
Planets shepherding material into a narrow ring around Fomalhaut

Videos

Zooming in on Fomalhaut and its dusty disc
Zooming in on Fomalhaut and its dusty disc

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.