Press Release
Future Looks Bright for Interferometry
First Light for the PRIMA instrument
18 September 2008
The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets.
"PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit" [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI.
Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres.
The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility-class instrument of its kind that is open to all astronomers.
PRIMA parts arrived at the summit at Paranal at the end of July and were integrated and tested during the following month. On 2 September 2008, as a first milestone, starlight from two VLTI 1.8-m Auxiliary Telescopes was fed into the PRIMA system, and interference fringes were detected on PRIMA's Fringe Sensor Unit. Three days later the system was routinely using active tracking on the fringes, compensating for atmospheric turbulence.
First light - or, in the case of interferometric instruments, first fringes - actually occurred ahead of the ambitious schedule set out by lead engineer Francoise Delplancke: "There were many activities that all had to be successful simultaneously for this to happen, but the assembly, integration, and verification went smoothly - I was pleased by how easy and reliable the fringe tracking was, for our first try."
All PRIMA sub-systems [3] have been installed successfully for use with two Auxiliary Telescopes and will now be submitted to intensive commissioning tests before being offered to the community of users for routine observations [4].
Notes
[1]: PRIMA stands for "Phase Referenced Imaging and Microarcsecond Astrometry". AMBER and MIDI are two instruments of the VLTI.
[2]: When a planet orbits a star, its gravity effectively pulls the star, making it "wobble". This wobbling is generally measured by looking at the variations of the radial velocity of a star, but if precise enough measurements of the position of the star can be made, it should be possible to see this wobble directly. PRIMA should be precise enough to make these measurements for Jupiter-like planets. PRIMA will be able to measure angular differences of about ten micro-arcseconds - the angle that human hair grows within one second, as seen from 100 metres afar.
[3]: The PRIMA facility uses a number of components along the VLTI pipeline, including Star Separators (STSs) for the telescopes, Differential Delay Lines (DDLs), laser Metrology and two Fringe Sensor Units (FSUs). The Star Separators collect the light from two distinct stars to be sent through the interferometer. The DDLs, built by a consortium (Geneva Observatory, MPIA Heidelberg and Landessternwarte Heidelberg) compensate for slight differences in path lengths due to the separate positions on the sky of the two sources. Each Fringe Sensor Unit recombines light from both telescopes for the two sources separately to form interferometric fringes. The Metrology system ties everything together at the 1-nm level by sending light back through the system from the FSUs to the STSs and back again.
[4]: Four commissioning runs are scheduled for PRIMA over the next six months and will concentrate on testing and characterising the fringe tracking on a single star. Observations of two distinct stars will begin next year and will extend these tests to the dual-star mode. These tests will also result in PRIMA's first astrometric measurements. Soon afterwards PRIMA will begin serious operations in planet-finding surveys.
The PRIMA project is a joint effort led by ESO and includes contributions from Geneva Observatory, MPIA Heidelberg, Landessternwarte Heidelberg, Leiden University, Ecole Polytechnique Fédérale de Lausanne, Institute of Microtechnology of Neuchâtel and MPE Garching; industrial partners on the PRIMA project include TNO and Thales Alenia Space.
Contacts
Francoise Delplancke
ESO
Garching, Germany
Tel: +49 89 3200 6510 I120
Email: fdelplan@eso.org
Gerard van Belle
ESO
Garching, Germany
Tel: +49 89 3200 6546
Email: gerard.van.belle@eso.org
About the Release
Release No.: | eso0829 |
Legacy ID: | PR 29/08 |
Name: | PRIMA |
Type: | Unspecified : Technology : Observatory : Telescope |
Facility: | Very Large Telescope Interferometer |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.