Press Release
Cepheids and their 'Cocoons'
Interferometry Helps Discover Envelopes Around Supergiant Stars
28 February 2006
Using ESO's Very Large Telescope Interferometer (VLTI) at Cerro Paranal, Chile, and the CHARA Interferometer at Mount Wilson, California, a team of French and North American astronomers has discovered envelopes around three Cepheids, including the Pole star. This is the first time that matter is found surrounding members of this important class of rare and very luminous stars whose luminosity varies in a very regular way. Cepheids play a crucial role in cosmology, being one of the first "steps" on the cosmic distance ladder.
The southern Cepheid L Carinae was observed with the VINCI and MIDI instrument at the VLTI, while Polaris (the Pole Star) and Delta Cephei (the prototype of its class) were scrutinised with FLUOR on CHARA, located on the other side of the equator. FLUOR is the prototype instrument of VINCI. Both were built by the Paris Observatory (France).
For most stars, the observations made with the interferometers follow very tightly the theoretical stellar models. However, for these three stars, a tiny deviation was detected, revealing the presence of an envelope.
"The fact that such deviations were found for all three stars, which however have very different properties, seems to imply that envelopes surrounding Cepheids are a widespread phenomenon", said Pierre Kervella, one of the lead authors.
The envelopes were found to be 2 to 3 times as large as the star itself. Although such stars are rather large - about fifty to several hundreds of solar radii - they are so far away that they can't be resolved by single telescopes. Indeed, even the largest Cepheids in the sky subtend an angle of only 0.003 arc second. To observe this is similar to viewing a two-storey house on the Moon.
Astronomers have thus to rely on the interferometric technique, which combines the light of two or more distant telescopes, thereby providing the angular resolution of a unique telescope as large as the separation between them. With the VLTI, it is possible to achieve a resolution of 0.001 arc second or less.
"The physical processes that have created these envelopes are still uncertain, but, in analogy to what happens around other classes of stars, it is most probable that the environments were created by matter ejected by the star itself", said Antoine Mérand, lead-author of the second paper describing the results.
Cepheids pulsate with periods of a few days. As a consequence, they go regularly through large amplitude oscillations that create very rapid motions of its apparent surface (the photosphere) with velocities up to 30 km/s, or 108 000 km/h! While this remains to be established, there could be a link between the pulsation, the mass loss and the formation of the envelopes.
Notes
Cepheids are commonly used as distance indicators, thanks to the existence of a basic relation between their intrinsic brightness and their pulsation period. By measuring the period of a Cepheid star, its intrinsic brightness can be deduced and from the observed apparent brightness, the distance may then be calculated. As they are intrinsically very bright stars, and can be observed in distant galaxies, this remarkable property has turned these yellow supergiant stars into primary 'standard candles' for extragalactic distance estimations (see eso0432).
L Carinae is the brightest Cepheid in the sky, and also the one that presents the largest apparent angular diameter. This is a massive supergiant star, having about 10 times the mass of the Sun and a radius approximately 180 times that of the Sun. Polaris is a peculiar star as it is located very close to the North celestial pole (hence its name). It is classified as a Cepheid, but it shows very weak pulsations compared to the other stars of its class. Delta Cephei is the prototype of the Cepheids. It was discovered to be a variable star in the 18th century by the English amateur John Goodricke, and it is still one of the brightest members of the Cepheid class. Its short period is characteristic of a relatively small supergiant, with a radius of "only" 43 times that of the Sun.
These results are published in two articles to appear in Astronomy and Astrophysics: "Extended envelopes around Galactic Cepheids I. L Car from near and mid-infrared interferometry with the VLTI" by P. Kervella et al., and "Extended envelopes around Cepheids II. Near infrared interferometric observations of Polaris and delta Cep using CHARA/FLUOR" by Antoine Mérand et al. The first paper is available as a PDF file from the editor's web site.
The team is composed of Pierre Kervella, Antoine Mérand, Vincent Coudé du Foresto , Guy Perrin (LESIA, Paris Observatory, France), Stephen T. Ridgway (NOAO, Tucson, US and CHARA, Georgia, US), Jason P. Aufdenberg (NOAO, Tucson, US), Theo A. ten Brummelaar, Harold A. McAlister, Laszlo Sturmann, Judit Sturmann, Nils H. Turner and David H. Berger (CHARA, Georgia, US).
The Center for High Angular Resolution Astronomy (CHARA) Array interferometer is operated by the Georgia State University, United States.
Contacts
Pierre Kervella
Observatoire de Paris
Paris, France
Tel: +33 1 45 07 79 66
Email: pierre.kervella@obspm.fr
Antoine Mérand
Observatoire de Paris & CHARA Array, Mt Wilson Observatory
Paris, France
Tel: +1 626 796 4130
Email: antoine.merand@obspm.fr
About the Release
Release No.: | eso0609 |
Legacy ID: | PR 09/06 |
Name: | L Carinae |
Type: | Milky Way : Star : Type : Variable Milky Way : Star : Type : Variable : Pulsating |
Facility: | Very Large Telescope, Very Large Telescope Interferometer |
Instruments: | MIDI, VINCI |
Science data: | 2007ApJ...664.1093M 2006A&A...448..623K |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.