Pressemitteilung
Kosmische Fingerabdrücke im Licht eines Gammastrahlenausbruchs zeigen unerwartete chemische Zusammensetzung entfernter Galaxien
2. November 2011
Ein internationales Astronomenteam hat mit dem Very Large Telescope der ESO das nur kurz aufblitzende, helle Licht eines fernen Gammastrahlenausbruchs genutzt, um die chemische Zusammensetzung weit entfernter Galaxien zu untersuchen. Überraschenderweise offenbarten zwei Galaxien im frühen Universum dabei einen höheren Anteil an schweren Elementen als unsere Sonne. Möglicherweise verschmelzen diese beiden Galaxien gerade miteinander. Solche Ereignisse führen zur Bildung vieler neuer Sterne und könnten Auslöser für Gammastrahlenausbrüche im frühen Universum sein.
Gammastrahlenausbrüche (auf Englisch Gamma Ray Bursts oder kurz GRBs) sind die hellsten Explosionen im Universum [1]. Entdeckt werden sie zumeist von Satellitenobservatorien, die den anfänglichen, kurzen Ausbruch von Gammastrahlung registrieren. Anschließend richten die Astronomen unverzüglich auch erdgebundene Teleskope auf die entsprechende Himmelsposition, um das Nachleuchten des Ausbruchs im sichtbaren und infraroten Spektralbereich zu beobachten, das einige Stunden bis Tage lang anhält. Der Gammastrahlenausbruch mit dem Kürzel GRB 090323 [2], wurde zuerst vom Gammastrahlen-Weltraumobservatorium Fermi der NASA entdeckt. Kurz darauf wurde der Ausbruch auch vom Röntgendetektor auf dem Swift-Satelliten der NASA und vom GROND-System am MPG/ESO 2,2-Meter-Teleskop in Chile (eso1049) nachgewiesen. Bereits einen Tag nach der Explosion konnte der Ausbruch dann sehr detailliert mit dem Very Large Telescope (VLT) der ESO untersucht werden.
Die VLT-Beobachtungen zeigen, dass das helle Licht des Gammastrahlenausbruchs sowohl die Galaxie, in der der Ausbruch stattfand, als auch eine weitere, in der Nähe der ersten befindliche Galaxie durchquert hat. Diese Galaxien sehen wir heute so, wie ihr Zustand vor etwa 12 Milliarden Jahren war [3]. Derart weit entfernte Galaxien werden nur selten vom Licht eines Gammastrahlenausbruchs durchleuchtet.
“Während wir das Licht dieses Gammastrahlenausbruchs untersuchten, wussten wir noch nicht was uns erwarten würde. Wir waren sehr überrascht, denn das kühle Gas dieser beiden Galaxien im frühen Universum hatte eine völlig unerwartete chemische Zusammensetzung”, erklärt Sandra Savaglio vom Max-Planck Institut für Extraterrestrische Physik in Garching bei München, die Erstautorin des Fachartikels, in dem die Ergebnisse vorgestellt werden. „Diese Galaxien enthielten mehr schwere Elemente, als je zuvor in einer Galaxie in einer so frühen Phase der Entwicklung des Universums beobachtet wurden. Wir waren bisher davon ausgegangen, dass das Universum damals chemisch noch nicht derart weit entwickelt gewesen sein konnte.”
Während das Licht des Gammastrahlenausbruchs die Galaxien durchquerte, wirkte das Gas in den Galaxien wie ein Filter und absorbierte Licht bei ganz bestimmten Wellenlängen. Ohne den Gammastrahlenausbruch wären diese lichtschwachen Galaxien unsichtbar geblieben. Indem die Astronomen die verräterischen Fingerabdrücke untersuchten, die verschiedene chemische Elemente im Licht des Ausbruchs hinterließen, waren sie in der Lage, die chemische Zusammensetzung des kühlen Gases in diesen weit entfernten Galaxien zu analysieren. So konnten sie herausfinden, wie stark die Galaxien bereits mit schweren Elementen angereichert waren.
Allgemein erwartet man, dass Galaxien im frühen Universum weniger schwere Elemente enthalten als heutige Galaxien (wie zum Beispiel unsere Heimatgalaxie, die Milchstraße). Die schweren Elemente werden während des Lebens und Sterbens von Sternen mehrerer Generationen produziert, und reichern sich so nach und nach im Gas der Galaxien an [4]. Astronomen sind daher in der Lage, anhand der chemischen Anreicherung von Galaxien festzustellen, wie weit diese Galaxien in ihrer Entwicklung fortgeschritten sind. Die neuen Beobachtungen zeigen nun aber überraschenderweise, dass manche Galaxien schon weniger als zwei Milliarden Jahre nach dem Urknall sehr reich an schweren Elementen gewesen sind. Das erschien bis dahin völlig undenkbar.
Um das kühle Gas so stark und schnell anzureichern, müssen sich in dem neu entdeckten Galaxienpaar rasend schnell neue Sterne bilden. Da die beiden Galaxien sehr nahe beieinander liegen, verschmelzen sie möglicherweise gerade miteinander. In den Gaswolken, die dabei miteinander kollidieren, sollten erheblich mehr Sterne entstehen als in normalen Galaxien. Die neuen Ergebnisse stützen auch die These, dass Gammastrahlenausbrüche im Zusammenhang mit der schnellen Entstehung vieler massereicher Sterne stehen.
Die rapide Entstehung von Sternen in solchen Galaxien könnte bereits früh in der Geschichte des Universums wieder abgeklungen sein. Heute, zwölf Milliarden Jahre später, würden die Überreste dieser Galaxien lediglich noch eine große Zahl von Sternleichen enthalten, etwa Schwarze Löcher und viele kühle Zwergsterne. Eine solche Population von „toten Galaxien“, die nur noch ein Schatten ihrer eigenen, gleißend hellen Vergangenheit sind, wäre heute nur sehr schwer nachzuweisen.
“Wir hatten großes Glück, dass wir GRB 090323 binnen kürzester Zeit beobachten konnten. Damit war der Ausbruch hell genug, dass wir mit dem VLT hochgenaue Daten gewinnen konnten. Gammastrahlenausbrüche bleiben nur für eine kurze Zeit ausreichend hell, so dass es sehr schwierig ist, gute Beobachtungsergebnisse zu erhalten. Wir hoffen, dass wir solche Galaxien in Zukunft mit sehr viel empfindlicheren Instrumenten erneut beobachten können. Sie wären perfekte Beobachtungsobjekte für das in Planung befindliche europäische Großteleskop E-ELT”, schließt Savaglio.
Endnoten
[1] Gammastrahlenausbrüche, die länger als zwei Sekunden dauern, bezeichnet man als lange Ausbrüche, die Ereignisse mit weniger als zwei Sekunden Dauer dagegen als kurze Ausbrüche. Lange Ausbrüche, zu denen auch der hier untersuchte Ausbruch gehört, stehen mit Supernova-Explosionen von massereichen, jungen Sternen in sternbildenden Galaxien in Verbindung. Die kurzen Ausbrüche sind noch nicht gut verstanden. Sie dürften bei der Verschmelzung von zwei kompakten Objekten wie zum Beispiel Neutronensternen entstehen.
[2] Die Bezeichnung enthält Datum, an dem der Ausbruch entdeckt wurde, in diesem Fall den 23. März 2009.
[3] Die Rotverschiebung der Galaxien beträgt 3,57. Das bedeutet, dass wir die Galaxien so sehen, wie ihr Zustand 1,8 Milliarden Jahre nach dem Urknall war.
[4] Kurz nach dem Urknall vor 13,7 Milliarden Jahren enthielt das Weltall an herkömmlicher Materie fast nur Wasserstoff und Helium. Die meisten schwereren Elemente, wie zum Beispiel Sauerstoff, Stickstoff und Kohlenstoff, wurden erst später durch thermonukleare Reaktionen im Inneren von Sternen erzeugt; beenden diese Sterne ihr Leben in einer Supernova-Explosion, dann werden ihre Hüllen hinausgeschleudert und reichern das Gas, das die Galaxie erfüllt, mit schweren Elementen an. Daher ist zu erwarten, dass die Menge an schweren Elementen in den meisten Galaxien mit der Zeit langsam zunimmt.
Weitere Informationen
Die hier vorgestellten Forschungsergebnisse erscheinen demnächst unter dem Titel “Super-solar Metal Abundances in Two Galaxies at z ~ 3.57 revealed by the GRB 090323 Afterglow Spectrum” in der Fachzeitschrift Monthly Notices of the Royal Astronomical Society.
Die beteiligten Wissenschaftler sind S. Savaglio (Max-Planck-Institut für Extraterrestrische Physik, Garching bei München [MPE]), A. Rau (MPE), J. Greiner (MPE), T. Krü̈hler (MPE; Technische Universitä̈t München, Garching [TUM]), S. McBreen (University College Dublin, Irland; MPE), D. H. Hartmann (Clemson University, Clemson, USA), A. C. Updike (Clemson), R. Filgas (MPE), S. Klose (Thü̈ringer Landessternwarte Tautenburg), P. Afonso (MPE), C. Clemens (MPE), A. Küpcü̈ Yoldas (ESO Garching), F. Olivares E. (MPE), V. Sudilovsky (MPE; TUM) und G. Szokoly (Eötvö̈s University, Budapest, Ungarn).
Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.
Links
Kontaktinformationen
Sandra Savaglio
Astronomer, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel: +49 89 30000 3358
Mobil: +49 151 5194 4223
E-Mail: savaglio@mpe.mpg.de
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org
Markus Nielbock (Pressekontakt Deutschland)
ESO Science Outreach Network
und Haus der Astronomie
Heidelberg, Deutschland
Tel: +49 6221 528-134
E-Mail: eson-germany@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1143de |
Name: | Gamma-ray burst |
Typ: | Early Universe : Cosmology : Phenomenon : Gamma Ray Burst |
Facility: | Very Large Telescope |
Instruments: | FORS2 |
Science data: | 2012MNRAS.420..627S |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.