Tiedote
HARPS Laser Frequency Comb Commissioned
New step towards finding other Earths
22. toukokuuta 2015
The HARPS laser frequency comb is now installed on the HARPS planet-finding instrument on the ESO 3.6-metre telescope at the La Silla Observatory in Chile and has completed an intense first commissioning phase. The increase in accuracy made possible by this new installation should in future allow HARPS to be able to detect Earth-mass planets in Earth-like orbits around other stars for the first time.
A laser frequency comb can be used as a ruler with which spectra from astronomical objects can be measured with unprecedented precision. They will allow the tiny changes in stellar velocity induced by an Earth-like planet as it orbits a star to be detected. The aim is to create such a system for the HARPS planet hunter on the ESO 3.6-metre telescope that is available for nightly observations at the La Silla Observatory.
The laser comb system has been completely re-engineered since its experimental run in 2012, and now provides increased reliability, broader wavelength coverage (from 460 to 690 nanometres) and about 15 000 lines per spectrum.
The team of Brazilian, Spanish and ESO astronomers travelled together with team members from MenloSystems GmbH and the Max Planck Institute for Quantum Optics to Chile to assemble and test the system continuously for ten days. The test run, completed on 18 April 2015, was an essential step in assessing the precision, reliability and accuracy of the system. An in-depth analysis of the roughly 3000 spectra collected is now underway.
Two fully independent laser frequency combs operating simultaneously and with different line spacings were tested, in order to demonstrate the accuracy of the system by using an independent source, and to isolate comb-related systematics. The second comb used during the tests was on loan from the Universitäts-Sternwarte München.
A precision in measuring stellar velocities of better than 0.2 kilometres/hour (5 centimetres/second) on a single exposure was obtained. This improved to better than 0.07 kilometres/hour (2 centimetres/second) when subsequent exposures were combined [1]. By comparison, the amplitude of the radial velocity induced in the Sun by the Earth as it orbits is 0.3 kilometres/hour (9 centimetres/second), so the new laser frequency combs in principle enable, for the first time, the detection of Earth-like planets in Earth-like orbits [2].
A second test run will follow to address some as yet unresolved points, and to demonstrate that the laser frequency comb is ready for routine operation by non-specialists.
The HARPS laser frequency comb project is a collaboration between the Federal University of Rio Grande do Norte, Brazil, and the Instituto de Astrofísica de Canarias in Spain and ESO. The comb itself is being developed by MenloSystems GmbH in Munich.
This is the first instrumental project at ESO conducted in partnership with a Brazilian university.
Notes
[1] This is equivalent to measuring truly tiny displacements of the spectrum on the detector — 0.85 and 0.34 nanometres respectively — by comparison the separation of the silicon atoms in the crystal lattice of the detector is 0.54 nanometres.
[2] This assumes that other sources of noise, such as the presence of star-spots or other stellar activity, are not so great as to swamp the signal from the orbiting planet or that their contribution could be either modeled or averaged out.
More Information
The LFC team was composed of:
- ESO: L. Pasquini, G. Avila, F. Kerber, G. Lo Curto, A. Manescau, E. Pozna, J. Urrutia
- UFRN: J.R. de Medeiros, B. Cantos, I. Leao
- IAC: R. Rebolo, A. Suarez, J. González-Hernández, M. Esposito
- USM: H. Kellermann
- MenloSystems: R. Holzwarth, O. Mandel, T. Steinmetz,
- Max-Planck-Institut für Quantenoptik (MPQ): R. Probst, Y. Wu
Linkit
- MenloSystems GmBH
- Max Planck Institut für Quantenoptik
- Federal University of Rio Grande do Norte
- Instituto de Astrofísica de Canarias
Yhteystiedot
Luca Pasquini
ESO
Garching, Germany
Tel: +49 89 3200 6792
Email: lpasquin@eso.org
J. R. de Medeiros
Universidade Federal do Rio Grande do Norte (UFRN)
Natal, Brazil
E-mail: renan@dfte.ufrn.br
R. Rebolo
Instituto de Astrofísica de Canarias
Tenerife, Spain
E-mail: rrl@ll.iac.es
Tiedotteesta
Tunnistus: | ann15037 |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.