Shooting for the Stars

ESO’s role in the revolutionary Breakthrough Initiatives

23 March 2018
What you’ll discover in this blog post:
  • What the Breakthrough Initiatives are
  • How ESO is upgrading the VLT to search for habitable planets in the Alpha Centauri system
  • The challenges of searching for exoplanets
Our fragile blue planet circles a star that is just one of hundreds of billions in our galaxy — which itself is just one stellar neighbourhood in a vast Universe of at least a hundred billion more. Astronomers, science fiction writers and the public alike have all long wondered: Are we alone in the cosmos? ESO recently joined the search for habitable worlds around other stars in collaboration with the Breakthrough Initiatives, a large-scale science programme to search for extraterrestrial intelligence. We chatted to Markus Kasper, ESO exoplanet expert, to learn more.

Q: Markus, how did you come to be involved in the Breakthrough Initiatives?

A: The Breakthrough Initiatives are a suite of scientific and technological programmes dedicated to probing the questions of life in the Universe. In 2015, back before ESO was officially involved, I was invited to join the committee of one of these programmes: Breakthrough Watch (BTW). The objective of BTW is to look for ways to find habitable exoplanets within a five parsec (16 light-year) search radius from Earth.

To me, this is the most interesting science goal in modern astronomy

To me, this is the most interesting science goal in modern astronomy, because these planets will be sufficiently nearby for the Breakthrough Starshot probes to get there on a reasonable timescale. Breakthrough Starshot is another branch of the initiatives, which aims to design and build ultra-fast, light-driven nano-spacecraft to send to the Alpha Centauri system. This is the closest star system to Earth at just four light-years away, consisting of the binary stars Alpha Centauri A and B, plus Proxima Centauri. But we need to find habitable planets in this system first!

Q: Why are the Breakthrough Initiatives happening now? Why is this the right moment?

A: Recent years have brought a wealth of exciting exoplanet discoveries, and we now know that the presence of rocky planets in the habitable zone of a star is the rule rather than an exception. For example, ESO instruments have very recently discovered potentially habitable planets orbiting some of our nearest neighbours like Proxima Centauri and Ross 128. With the emerging class of extremely large telescopes currently under construction, the detection of biosignatures in the atmospheres of nearby exoplanets — gases like oxygen or methane that might indicate past or present life — will be within reach during the next decade, so now is the perfect time to find these exciting planets.

Q: Tell us more about how Breakthrough Watch will achieve its goals.

A: A big problem in exoplanet discovery is that stars are incredibly bright in comparison to their planets, and so habitable planets are hard to detect. But at mid-infrared wavelengths, between 10 and 20 microns, habitable planets become much brighter and are easier to find — between 10 and 12.5 microns, the Earth is actually the brightest planet in the Solar System.

We could detect a habitable planet in just 100 hours of observing time

During the initial meetings of the BTW committee, we identified thermal imaging with 8-metre ground-based telescopes — such as ESO’s Very Large Telescope — as one of the best short-term opportunities to search for Earth-sized, rocky planets in the Alpha Centauri system. In 2016 ESO signed an agreement with Breakthrough Initiatives to follow through with this plan. Agreements for similar efforts with other large observatories (such as Gemini and Magellan) are being considered as well.

ESO’s goal with NEAR (New Earths in the Alpha cen Region) is to improve the contrast and sensitivity of the existing Very Large Telescope instrument VISIR (VLT Imager and Spectrometer for mid-Infrared) at ESO’s Paranal Observatory in Chile. The proximity of Alpha Centauri means that we could detect a habitable planet in just 100 hours of observing time on the VLT.

Q: What technology is being developed to make these observations?

A: There are three main areas of technological innovation in the NEAR project. Firstly, Adaptive Optics (AO) will be used to improve the point source sensitivity of VISIR. The AO will be implemented by ESO, building on the newly-available deformable secondary mirror at the VLT’s Unit Telescope 4 (UT4).

Secondly, a team led by the University of Liège (Belgium), Uppsala University (Sweden) and Caltech (USA) will develop a novel vortex coronagraph to provide a very high imaging contrast at small angular separations. This is necessary because even when we look at a star system in the mid-infrared, the star itself is still millions of times brighter than the planets we want to detect, so we need a dedicated technique to reduce the star’s light. A coronagraph can achieve this.

Finally, a module containing the wavefront sensor and a new internal chopping device for detector calibration will be built by our contractor Kampf Telescope Optics in Munich.

Q: What challenges do you expect to face?

A: Generally, moving an instrument to a different telescope (in this case, we are moving VISIR from UT3 to UT4) is never a small task, especially for the operations staff at the observatory. An additional challenge is that we have to make NEAR work at its best with a fixed deadline and with sparse resources. The performance goals are very demanding and require one part in a million contrast at less than one arcsecond separation — which is a challenge similar to detecting a firefly sitting on a lighthouse lamp from a few hundred kilometres away! This has not yet been demonstrated in the thermal infrared.

Q: How long will these first big developments take?

A: The testing of the hardware in Europe is taking place now, during the first half of 2018. It will be implemented in VISIR at Paranal by end of 2018. The Alpha Centauri observing campaign is scheduled for mid-2019 and will last for about two weeks to collect the required 100 hours of observation time, once the system is delivering the expected performance.

Q: What exactly is your role in the project?

A: The work on NEAR is carried out by a small and highly motivated core team at ESO, in collaboration with engineers and scientists from various institutions and countries who are part of the ESO community, as well as industrial partners. My personal role, besides making the link to the Breakthrough Initiatives as a representative, is quite diverse. I mostly work on the design and analysis of the instrumental modifications, but I also develop the concepts for optimum observing and exploitation of the campaign data.

Q: For you, what is the most exciting aspect of this endeavour?

A: Besides the fascinating science goals, it is exciting to see how the Breakthrough Initiatives are managing to create momentum in the research field. By backing ideas and projects with a higher risk level than public funding agencies are ready to support, the Initiatives have motivated scientists to push the envelope and leap forward in their research. The Breakthrough Listen branch, for example, searches the sky for radio and laser signals emitted by intelligent beings over a volume in space that is orders of magnitudes larger than what has previously been observed.

By backing high-risk ideas and projects, the Initiatives have motivated scientists to push the envelope and leap forward in their research

Q: What hopes do you have for the outcomes of the Breakthrough Initiatives?

A: I am quite optimistic that we’ll achieve our technical and sensitivity goals with NEAR. Of course, we do not know whether the planets we are looking for actually exist in the Alpha Centauri system. The fact that Alpha Centauri A and B are a relatively close binary may make it more difficult for planets to have formed and exist in the system. The chances are hard to quantify, but if we detected a habitable planet in the Alpha Centauri system it would have incredible impacts even beyond astronomical science — which makes it worth looking anyway.

And identifying such planets isn’t even the biggest challenge on the cards. Once we know what’s out there, Breakthrough Starshot will aim for in-situ exploration of these systems using microsatellites, which is a whole new technological ball game!

Numbers in this article

4 Distance to the Alpha Centauri system in light-years
16 The search radius of the Breakthrough Watch initiative, in light-years
100 The estimated hours of observing time at the VLT needed to make a detection of a habitable planet in the Alpha Centauri system
2016 The year ESO signed an agreement with the Breakthrough Initiatives

Biography Markus Kasper

Markus Kasper studied physics at the Universities of Frankfurt am Main and Heidelberg. He worked on Adaptive Optics wavefront reconstruction and star formation during his PhD at the Max Planck Institute for Astronomy in the late 1990s. Since then, he has worked at ESO in Garching, Germany, as an engineer and scientist at the interface between AO instrumentation and astronomical science, specialising in high-contrast imaging and the observation of exoplanets.

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.