What you’ll discover in this blog post:
  • What the early Universe was like after the Big Bang
  • What might have caused the Universe to transform into what it is today
  • What the first stars and galaxies may have been like

You’ve most likely seen the image below: the famous Hubble Ultra Deep Field, which contains thousands of galaxies whose light has travelled for billions of years before reaching us.

But did you know that the Universe hasn’t always been full of light sources like stars and galaxies? Astronomers call this the Cosmic Dark Ages. Some time in the early Universe, about one billion years after the Big Bang, something switched on the lights and brought the Universe into the era we know today. Let’s find out how this happened!

Let’s start at the very beginning (a very good place to start)...

Around 13.8 billion years ago, the Universe sprang into being, and started gradually transforming into the vast cosmos we know today. The Big Bang wasn’t really a “bang”, so to speak — it was more a very rapid expansion from something infinitely small, infinitely hot, and infinitely dense to something marginally less so –– which then continued to expand for the rest of time.

Straight after the expansion began, the whole Universe was an extremely hot “soup” of subatomic particles: protons, neutrons and electrons. As it began to cool, the protons and neutrons started grouping together to form hydrogen and helium atoms. These atoms were ionised: the intense heat of the early Universe stripped these atoms of their electrons. At this point, light could not travel through the Universe as it would be deflected by the free electrons.

Once the Universe cooled a little more, electrons were able to join the ionised atoms, creating neutral hydrogen and helium. This process, known by astronomers as recombination, occurred roughly 300 000 years after the Big Bang and made the Universe transparent, because light would no longer be deflected by free electrons.

The reason astronomers know about this era is from remnant Cosmic Microwave Background radiation, which is scattered across the cosmos today. This is leftover light from the era of recombination whose wavelength has been stretched by the expansion of the Universe, becoming redshifted. This means that the further this light has travelled, the longer its wavelength has stretched. This remnant light is a sort of footprint of how the Universe looked back then: just a gaseous soup of hydrogen and helium, with gas being more densely packed in some areas than others. But at this point there were still no sources of light like stars, so astronomers refer to this epoch as the Cosmic Dark Ages.

Plancks cosmic microwave background
Map of the Cosmic Microwave Background captured by the European Space Agency’s Planck space telescope. Different colours show small fluctuations in temperature that correspond to areas with slightly different densities, which would later become the seeds for the formation of the first stars and galaxies.
Credit: ESA and the Planck Collaboration

Clearing the Fog

Between 500 million to 1 billion years after the Big Bang, the Universe transformed, clearing the fog of neutral gas. It is thought that a vast amount of ultraviolet (UV) light was able to burn through this fog, stripping electrons from their atoms, ionising them. Because of this, astronomers call this time in the early Universe the epoch of reionisation, with “bubbles” of ionised gas growing amidst the surrounding neutral gas. It’s not yet known what exactly provided the necessary UV light to reionise the Universe; it could have been stars, early galaxies, or quasars, or even a combination of these.

This video shows a simulation of how reionisation may have occurred. The simulation starts with neutral gas, shown in dark tones. The ultraviolet radiation from the first stars strips electrons off these atoms, creating bubbles of ionised gas (shown in blue) that expand as the UV radiation reaches further out.
Credit: M. Alvarez (http://www.cita.utoronto.ca/~malvarez), R. Kaehler, and T. Abel

Astronomers have hypothesised that the intense UV radiation from the epoch of reionisation was released from the very first stars. They would have formed over millions of years as some areas of the cosmic fog condensed and collapsed under their own gravity.

A star is a very dense form of plasma that fuses together atoms like hydrogen and helium under very intense heat and pressure, forming heavier elements and releasing vast amounts of energy. Once all the fuel has been used up, depending on the size of the star, it will die, releasing a plethora of new elements into the space around it, which will end up in subsequent generations of newer stars.

The very first stars would have been 30 to 300 times bigger than our Sun, and millions of times brighter. As opposed to modern stars, which contain traces of heavy elements, those first stars would have been made of just hydrogen and helium. They would have burnt out only after a few million years and radiated intense UV light, enough to clear the fog in the epoch of reionisation. These stars would have ended their lives in gargantuan supernovae explosions, hot enough to create the heaviest elements in the Universe. These explosions would have populated the cosmos with its first heavy elements, which would have then gone on to form more dust, planets and stars.

Up until very, very recently, the existence of extremely massive stars in the early Universe was purely theoretical, simply because peering into space that far back into time was limited by the technology available.

In 2011, research using ESO’s Very Large Telescope (VLT) allowed astronomers to probe into the early Universe, finding early stars and galaxies when the Universe was only 780 million years old. They found that the UV light emitted by some of those galaxies would have represented an important source of energy to reionise the cosmic fog. Another study in 2015 used the VLT and other telescopes to study early galaxies, finding a surprisingly bright galaxy with no traces of elements heavier than helium, just as expected from the first generation of stars.

Then, on the 30th March 2022, astronomers using NASA/ESA’s Hubble Space Telescope were able to capture the most distant star ever seen, from when the Universe was only 7% of its current age, or 4 billion years after the Big Bang. They were able to see this due to an effect called gravitational lensing, where large galaxy clusters can act as a magnifying glass, showing objects at very large distances away. Called Earendal (which means “morning star” in old English), the star is estimated to be at least 50 times the mass of our Sun and millions of times brighter.

Galaxies far, far away

The very first galaxies would have been very different from newer galaxies astronomers observe today. Because of the chaotic nature of the early Universe, galaxy shapes would have been less defined, lacking stable features like bulges (tightly-bound conglomerations of stars towards the centre of the galaxy) and spiral arms (like those in the Milky Way). However, there are still some puzzling things…

The distant galaxy ALESS 073.1
The distant galaxy ALESS 073.1 observed with ALMA, with the gas and dust shown in blue and red respectively.
Credit: Federico Lelli

Early galaxies are expected to be mostly populated with lighter elements like hydrogen and helium. However, on some occasions, astronomers have found galaxies from the epoch of reionisation that appear much older based on their chemical compositions. For example, in 2015, astronomers using the Atacama Large Millimetre/Submillimetre Array (ALMA), of which ESO is a partner, and ESO’s VLT, discovered a galaxy from when the Universe was around 700 million years old (firmly placing it around the epoch of reionisation), and found that it contained gas and dust from much heavier elements. An even more distant galaxy was studied with ALMA in 2017, and was found to be surprisingly dusty. This suggests that perhaps many early supernovae had populated these galaxies with heavy elements very quickly, but astronomers do not know this for sure.

Similarly, last year, astronomers using ALMA found a galaxy that appears much older than expected. We see it when the universe was just 1.2 billion years old, but it already exhibits features like a bulge and a rotating disc, similar to more evolved galaxies like our own Milky Way.

Clearly, there is still much yet to learn about galaxies in the early Universe.

Still a mystery

While astronomers have been able to piece together a rough timeline and plausible theories about the Universe’s formation, much of it is still a mystery. It is very difficult to piece together an exact timeline of the early Universe. When did reionisation actually end? How were the first galaxies assembled together?

To answer these questions, more research and more accurate technology is needed. ESO’s Extremely Large Telescope (ELT), currently under construction in Chile and set to see first light later this decade, will be instrumental in understanding the early Universe.

The ELT will have a 39-metre mirror, bigger than all currently existing optical research telescopes combined, enabling it to collect a huge amount of light. It will allow astronomers to investigate individual stars in more distant galaxies, tracing their history back to the early Universe. Its operation will mark a dramatic increase in astronomy’s capabilities, peering back into the cosmos further and more accurately than ever before.

Let’s just be thankful that the Universe is transparent and full of light, and that, using the newest technology, we are able to peer back to the far reaches of the cosmos.

Biography Naomi Dinmore

Naomi is an intern in Science Journalism at ESO. After studying a Bachelor's in Physics and Music from Cardiff University, she then studied her Master's in Science Communication at Imperial College London.

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.