Press Release

Dark Matter May be Smoother than Expected

Careful study of large area of sky imaged by VST reveals intriguing result

7 December 2016

Analysis of a giant new galaxy survey, made with ESO’s VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team used data from the Kilo Degree Survey (KiDS) to study how the light from about 15 million distant galaxies was affected by the gravitational influence of matter on the largest scales in the Universe. The results appear to be in disagreement with earlier results from the Planck satellite.

Hendrik Hildebrandt from the Argelander-Institut für Astronomie in Bonn, Germany and Massimo Viola from the Leiden Observatory in the Netherlands led a team of astronomers [1] from institutions around the world who processed images from the Kilo Degree Survey (KiDS), which was made with ESO’s VLT Survey Telescope (VST) in Chile. For their analysis, they used images from the survey that covered five patches of the sky covering a total area of around 2200 times the size of the full Moon [2], and containing around 15 million galaxies.

By exploiting the exquisite image quality available to the VST at the Paranal site, and using innovative computer software, the team were able to carry out one of the most precise measurements ever made of an effect known as cosmic shear. This is a subtle variant of weak gravitational lensing, in which the light emitted from distant galaxies is slightly warped by the gravitational effect of large amounts of matter, such as galaxy clusters.

In cosmic shear, it is not galaxy clusters but large-scale structures in the Universe that warp the light, which produces an even smaller effect. Very wide and deep surveys, such as KiDS, are needed to ensure that the very weak cosmic shear signal is strong enough to be measured and can be used by astronomers to map the distribution of gravitating matter. This study takes in the largest total area of the sky to ever be mapped with this technique so far.

Intriguingly, the results of their analysis appear to be inconsistent with deductions from the results of the European Space Agency’s Planck satellite, the leading space mission probing the fundamental properties of the Universe. In particular, the KiDS team’s measurement of how clumpy matter is throughout the Universe — a key cosmological parameter — is significantly lower than the value derived from the Planck data [3].

Massimo Viola explains: “This latest result indicates that dark matter in the cosmic web, which accounts for about one-quarter of the content of the Universe, is less clumpy than we previously believed.”

Dark matter remains elusive to detection, its presence only inferred from its gravitational effects. Studies like these are the best current way to determine the shape, scale and distribution of this invisible material.

The surprise result of this study also has implications for our wider understanding of the Universe, and how it has evolved during its almost 14-billion-year history. Such an apparent disagreement with previously established results from Planck means that astronomers may now have to reformulate their understanding of some fundamental aspects of the development of the Universe.

Hendrik Hildebrandt comments: “Our findings will help to refine our theoretical models of how the Universe has grown from its inception up to the present day.”

The KiDS analysis of data from the VST is an important step but future telescopes are expected to take even wider and deeper surveys of the sky.

The co-leader of the study, Catherine Heymans of the University of Edinburgh in the UK adds: “Unravelling what has happened since the Big Bang is a complex challenge, but by continuing to study the distant skies, we can build a picture of how our modern Universe has evolved.”

We see an intriguing discrepancy with Planck cosmology at the moment. Future missions such as the Euclid satellite and the Large Synoptic Survey Telescope will allow us to repeat these measurements and better understand what the Universe is really telling us,” concludes Konrad Kuijken (Leiden Observatory, the Netherlands), who is principal investigator of the KiDS survey.

Notes

[1] The international KiDS team of researchers includes scientists from Germany, the Netherlands, the UK, Australia, Italy, Malta and Canada.

[2] This corresponds to about 450 square degrees, or a little more than 1% of the entire sky.

[3] The parameter measured is called S8. Its value is a combination of the size of density fluctuations in, and the average density of, a section of the Universe. Large fluctuations in lower density parts of the Universe have an effect similar to that of smaller amplitude fluctuations in denser regions and the two cannot be distinguished by observations of weak lensing. The 8 refers to a cell size of 8 megaparsecs, which is used by convention in such studies.

More information

This research was presented in the paper entitled “KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing”, by H. Hildebrandt et al., to appear in Monthly Notices of the Royal Astronomical Society.

The team is composed of H. Hildebrandt (Argelander-Institut für Astronomie, Bonn, Germany), M. Viola (Leiden Observatory, Leiden University, Leiden, the Netherlands), C. Heymans (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), S. Joudaki (Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Australia), K. Kuijken (Leiden Observatory, Leiden University, Leiden, the Netherlands), C. Blake (Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Australia), T. Erben (Argelander-Institut für Astronomie, Bonn, Germany), B. Joachimi (University College London, London, UK), D Klaes (Argelander-Institut für Astronomie, Bonn, Germany), L. Miller (Department of Physics, University of Oxford, Oxford, UK), C.B. Morrison (Argelander-Institut für Astronomie, Bonn, Germany), R. Nakajima (Argelander-Institut für Astronomie, Bonn, Germany), G. Verdoes Kleijn (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), A. Amon (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), A. Choi (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), G. Covone (Department of Physics, University of Napoli Federico II, Napoli, Italy), J.T.A. de Jong (Leiden Observatory, Leiden University, Leiden, the Netherlands), A. Dvornik (Leiden Observatory, Leiden University, Leiden, the Netherlands), I. Fenech Conti (Institute of Space Sciences and Astronomy (ISSA), University of Malta, Msida, Malta; Department of Physics, University of Malta, Msida, Malta), A. Grado (INAF – Osservatorio Astronomico di Capodimonte, Napoli, Italy), J. Harnois-Déraps (Institute for Astronomy, University of Edinburgh, Edinburgh, UK; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada), R. Herbonnet (Leiden Observatory, Leiden University, Leiden, the Netherlands), H. Hoekstra (Leiden Observatory, Leiden University, Leiden, the Netherlands), F. Köhlinger (Leiden Observatory, Leiden University, Leiden, the Netherlands), J. McFarland (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), A. Mead (Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada), J. Merten (Department of Physics, University of Oxford, Oxford, UK), N. Napolitano (INAF – Osservatorio Astronomico di Capodimonte, Napoli, Italy), J.A. Peacock (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), M. Radovich (INAF – Osservatorio Astronomico di Padova, Padova, Italy), P. Schneider (Argelander-Institut für Astronomie, Bonn, Germany), P. Simon (Argelander-Institut für Astronomie, Bonn, Germany), E.A. Valentijn (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), J.L. van den Busch (Argelander-Institut für Astronomie, Bonn, Germany), E. van Uitert (University College London, London, UK) and L. van Waerbeke (Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Hendrik Hildebrandt
Argelander-Institut für Astronomie
Bonn, Germany
Tel: +49 228 73 1772
Email: hendrik@astro.uni-bonn.de

Massimo Viola
Leiden Observatory
Leiden, The Netherlands
Tel: +31 (0)71 527 8442
Email: viola@strw.leidenuniv.nl

Catherine Heymans
Institute for Astronomy, University of Edinburgh
Edinburgh, United Kingdom
Tel: +44 131 668 8301
Email: heymans@roe.ac.uk

Konrad Kuijken
Leiden Observatory
Leiden, The Netherlands
Tel: +31 715275848
Cell: +31 628956539
Email: kuijken@strw.leidenuniv.nl

Richard Hook
ESO Public Information Officer
Garching bei Munchen, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Connect with ESO on social media

About the Release

Release No.:eso1642
Name:Dark Matter
Type:Early Universe : Cosmology : Phenomenon : Dark Matter
Facility:Very Large Telescope
Science data:2017MNRAS.465.1454H

Images

Dark matter map of KiDS survey region (region G12)
Dark matter map of KiDS survey region (region G12)
Dark matter map of KiDS survey region (region G9)
Dark matter map of KiDS survey region (region G9)
Dark matter map of KiDS survey region (region G15)
Dark matter map of KiDS survey region (region G15)

Videos

Zooming in on one of the KiDS survey regions
Zooming in on one of the KiDS survey regions

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.