Communiqué de presse
Une belle nébuleuse, une histoire violente : le choc des étoiles résout un mystère stellaire
11 avril 2024
Lorsque les astronomes ont observé un couple stellaire au cœur d'un impressionnant nuage de gaz et de poussière, ils ont été surpris. Les paires d'étoiles sont généralement très similaires, comme des jumeaux, mais dans le cas de HD 148937, l'une des étoiles semble plus jeune et, contrairement à l'autre, est magnétique. De nouvelles données de l'Observatoire Européen Austral (ESO) suggèrent qu'il y avait à l'origine trois étoiles dans le système, jusqu'à ce que deux d'entre elles entrent en collision et fusionnent. Cet événement violent a créé le nuage qui l'entoure et modifia à jamais le destin du système.
"Lors de mes recherches, j'ai été frappée par la particularité de ce système", explique Abigail Frost, astronome à l'ESO au Chili et autrice principale de l'étude publiée aujourd'hui dans Science. Le système, HD 148937, est situé à environ 3800 années-lumière de la Terre, dans la direction de la constellation Norma. Elle est composée de deux étoiles beaucoup plus massives que le Soleil et entourée d'une magnifique nébuleuse, un nuage de gaz et de poussières. "Une nébuleuse entourant deux étoiles massives est une rareté, et cela nous a donné l'impression que quelque chose de cool devait s'être produit dans ce système. Au fur et à mesure que nous examinions ces données, cette impression n'a fait que croître".
"Après une analyse détaillée, nous avons pu déterminer que l'étoile la plus massive semble beaucoup plus jeune que son compagnon, ce qui n'est pas logique puisqu'elles auraient dû se former en même temps !" explique Abigail Frost. La différence d'âge - une étoile semble être au moins 1,5 million d'années plus jeune que l'autre - suggère que quelque chose a dû rajeunir l'étoile la plus massive.
Une autre pièce du puzzle est la nébuleuse qui entoure les étoiles, connue sous le nom de NGC 6164/6165. Elle est âgée de 7 500 ans, soit des centaines de fois plus jeune que les deux étoiles. La nébuleuse présente également de très grandes quantités d'azote, de carbone et d'oxygène, ce qui est surprenant, car ces éléments sont normalement attendus à l'intérieur d'une étoile, et non à l'extérieur ; c'est comme si un événement violent les avait libérés.
Pour élucider ce mystère, l'équipe a rassemblé neuf années de données provenant des instruments PIONIER et GRAVITY, tous deux installés sur le Very Large Telescope Interferometer (VLTI) de l'ESO, situé dans le désert d'Atacama au Chili. Ils ont également utilisé des données d'archives de l'instrument FEROS à l'observatoire de La Silla de l'ESO.
"Nous pensons que ce système avait au moins trois étoiles à l'origine ; deux d'entre elles devaient être proches à un moment donné de l'orbite, tandis qu'une autre étoile était beaucoup plus éloignée", explique Hugues Sana, professeur à la KU Leuven, en Belgique, et principal responsable des observations. "Les deux étoiles internes ont fusionné de manière violente, créant une étoile magnétique et rejetant de la matière, ce qui a donné naissance à la nébuleuse. L'étoile la plus éloignée a formé une nouvelle orbite avec l'étoile nouvellement fusionnée, devenue magnétique, créant ainsi la binaire que nous voyons aujourd'hui au centre de la nébuleuse".
"Le scénario de la fusion me trottait déjà dans la tête en 2017 lorsque j'étudiais les observations de nébuleuses obtenues avec le télescope spatial Herschel de l'Agence Spatiale Européenne", ajoute le coauteur Laurent Mahy, actuellement chercheur senior à l'Observatoire royal de Belgique. "La découverte d'une différence d'âge entre les étoiles suggère que ce scénario est le plus plausible, et ce n'est qu'avec les nouvelles données de l'ESO qu'il a été possible de le démontrer. "
Ce scénario explique également pourquoi l'une des étoiles du système est magnétique alors que l'autre ne l'est pas - une autre caractéristique particulière de HD 148937 repérée dans les données du VLTI.
En même temps, elle contribue à résoudre un mystère de longue date en astronomie : comment les étoiles massives obtiennent leurs champs magnétiques. Si les champs magnétiques sont une caractéristique commune des étoiles de faible masse comme notre soleil, les étoiles plus massives ne peuvent pas maintenir des champs magnétiques de la même manière. Pourtant, certaines étoiles massives sont bel et bien magnétiques.
Les astronomes soupçonnaient depuis un certain temps que les étoiles massives pouvaient acquérir des champs magnétiques lors de la fusion de deux étoiles. Mais c'est la première fois que des chercheurs trouvent une preuve directe de ce phénomène. Dans le cas de HD 148937, la fusion a dû se produire récemment. "Le magnétisme dans les étoiles massives ne devrait pas durer très longtemps par rapport à la durée de vie de l'étoile, il semble donc que nous ayons observé cet événement rare très peu de temps après qu'il se soit produit", ajoute Abigail Frost.
L’Extremely Large Telescope (ELT) de l'ESO, actuellement en construction dans le désert chilien d'Atacama, permettra aux chercheurs de comprendre plus en détail ce qui s'est passé dans le système, et peut-être de révéler d'autres surprises.
Plus d'informations
Cette recherche a été présentée dans un article intitulé "A magnetic massive star has experienced a stellar merger" (Une étoile magnétique massive a connu une fusion stellaire) à paraître dans Science (www.science.org/doi/10.1126/science.adg7700). L'article sera publié par Science en version imprimée le vendredi 12 avril 2024, et sera mis en ligne à 14h00, heure de l'Est des États-Unis, le jeudi 11 avril 2024 (20h00 CEST). Pour obtenir la version finale de l'article sous embargo, veuillez consulter https://www.eurekalert.org/press/scipak/ ou contacter scipak@aaas.org pendant la durée de l'embargo.
Ce projet a été financé par le Conseil européen de la recherche (CER) dans le cadre du programme de recherche et d'innovation Horizon 2020 de l'Union européenne (convention de subvention numéro 772225 : MULTIPLES ; PI : Hugues Sana).
L'équipe est composée de A. J. Frost (European Southern Observatory, Santiago, Chile [ESO Chile] and Institute of Astronomy, KU Leuven, Belgium [KU Leuven]), H. Sana (KU Leuven), L. Mahy (Royal Observatory of Belgium, Belgium and KU Leuven), G. Wade (Department of Physics & Space Science, Royal Military College of Canada, Canada [RMC Space Science]), J. Barron (Department of Physics, Engineering & Astronomy, Queen’s University, Canada and RMC Space Science), J.-B. Le Bouquin (Université Grenoble Alpes, Centre national de la Recherche Scientifique, Institute de Planétologie et d’Astrophyisique de Grenoble, France), A. Mérand (European Southern Observatory, Garching, Germany [ESO]), F. R. N. Schneider (Heidelberger Institut für Theoretische Studien, Germany and Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Germany), T. Shenar (The School of Physics and Astronomy, Tel Aviv University, Israel and KU Leuven), R. H. Barbá (Departamento de Física y Astronomía, Universidad de La Serena, Chile), D. M. Bowman (School of Mathematics, Statistics and Physics, Newcastle University, UK and KU Leuven), M. Fabry (KU Leuven), A. Farhang (School of Astronomy, Institute for Research in Fundamental Sciences, Iran), P. Marchant (KU Leuven), N. I. Morrell (Las campanas Observatory, Carnegie Observatories, Chile) and J. V. Smoker (ESO Chile and UK Astronomy Technology centre, Royal Observatory, UK).
L'Observatoire Européen Austral (ESO) permet aux scientifiques du monde entier de découvrir les secrets de l'Univers pour le bénéfice de tous. Nous concevons, construisons et exploitons des observatoires au sol de classe mondiale - que les astronomes utilisent pour s'attaquer à des questions passionnantes et transmettre la fascination de l'astronomie - et nous encourageons la collaboration internationale en astronomie. Créé en 1962 en tant qu'organisation intergouvernementale, l'ESO est aujourd'hui soutenu par 16 États membres (Allemagne, Autriche, Belgique, Danemark, Espagne, France, Finlande, Irlande, Italie, Pays-Bas, Pologne, Portugal, République tchèque, Royaume-Uni, Suède et Suisse), ainsi que par l'État hôte du Chili et l'Australie en tant que partenaire stratégique. Le siège de l'ESO ainsi que son centre d'accueil et son planétarium, l'ESO Supernova, sont situés près de Munich en Allemagne, tandis que le désert chilien d'Atacama, un endroit magnifique offrant des conditions uniques pour observer le ciel, accueille nos télescopes. L'ESO exploite trois sites d'observation : La Silla, Paranal et Chajnantor. À Paranal, l'ESO exploite le Very Large Telescope et son Very Large Telescope Interferometer, ainsi que des télescopes de sondage tel que VISTA. Toujours à Paranal, l'ESO accueillera et exploitera le Cherenkov Telescope Array South, l'observatoire de rayons gamma le plus grand et le plus sensible au monde. Avec ses partenaires internationaux, l'ESO exploite APEX et ALMA à Chajnantor, deux installations qui observent le ciel dans le domaine millimétrique et submillimétrique. Au Cerro Armazones, près de Paranal, nous construisons "le plus grand œil au monde tourné vers le ciel" - l'Extremely Large Telescope de l'ESO. Depuis nos bureaux de Santiago du Chili, nous soutenons nos opérations dans le pays et nous nous engageons auprès des partenaires et de la société chiliens.
Liens
- L'article scientifique (preprint ; pour la version finale de l'article sous embargo, veuillez consulter le site suivant https://www.eurekalert.org/press/scipak/ ou contacter scipak@aaas.org tant que dure l'embargo)
- Photos du VLT/VLTI
- Pour en savoir plus sur l'Extremely Large Telescope de l'ESO, consultez notre site web dédié et notre
dossier de presse - Journalistes: Inscrivez-vous pour recevoir nos communiqués sous embargo dans votre langue.
- Scientifiques: Vous avez une histoire ? Racontez-la !
Contacts
Abigail Frost
European Southern Observatory
Santiago, Chile
Tél: +44 79 8353 9292
Courriel: Abigail.Frost@eso.org
Hugues Sana
KU Leuven
Leuven, Belgium
Tél: +32 479 50 46 73
Courriel: hugues.sana@kuleuven.be
Laurent Mahy
Royal Observatory of Belgium
Brussels, Belgium
Tél: +32 476 23 60 06
Courriel: laurent.mahy@oma.be
Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tél: +49 89 3200 6670
Mobile: +49 151 241 664 00
Courriel: press@eso.org
Lê Binh San PHAM
Communication Officer, Royal Observatory of Belgium
Brussels, Belgium
Courriel: lebinhsan.pham@oma.be
Joerg Gasser (contact presse pour la Suisse)
Réseau de diffusion scientifique de l'ESO
Courriel: eson-switzerland@eso.org
A propos du communiqué de presse
Communiqué de presse N°: | eso2407fr-ch |
Nom: | HD 148937, NGC 6164, NGC 6165 |
Type: | Milky Way : Star : Grouping : Binary Milky Way : Nebula |
Facility: | Very Large Telescope Interferometer |
Instruments: | FEROS, GRAVITY, PIONIER |
Science data: | 2024Sci...384..214F |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.