Pressmeddelande
Astronomer avslöjar magnetiska fält vid det svarta hålet i M87
24 mars 2021, Skurup
Event Horizon Telescope-konsortiet, som presenterade den första bilden av ett svart hål, har i dag offentliggjort en ny bild av det supermassiva svarta hålet i centrum av galaxen M87 som visar ljusets polarisation. Det är första gången som astronomer har kunnat mäta polarisation, som är en indikation på förekomsten av magnetfält, så nära kanten av ett svart hål. Observationerna är avgörande för att förstå hur energirika jetstrålar bildas i M87, som är belägen på 55 miljoner ljusårs avstånd.
“Vi har nu fått nästa viktiga ledtråd för att kunna förstå hur magnetiska fält fungerar i närheten av svarta hål, och hur aktiviteten i detta mycket kompakta område i rymden kan ge upphov till energirika jetstrålar som når långt bortom galaxen” säger Monica Mościbrodzka, ledare för EHT Polarimetry Working Group och biträdande professor vid Radbouduniversitetet i Nederländerna.
Den 10 april 2019 presenterade astronomer den första bilden någonsin av ett svart hål.Den visade en ljus ringliknande struktur med ett mörkt centralområde - det svarta hålets “skugga”. Sedan dess har EHT-konsortiet dykt djupare i datan, som samlades in 2017. De har nu upptäckt att en avsevärt del av ljuset från området kring det svarta hålet i M87 är polariserat.
“Detta arbete är en viktig milstolpe: det polariserade ljuset bär på information som gör det möjligt för oss att bättre förstå fysiken bakom den bild vi såg i april 2019” säger Iván Martí-Vidal, ledare för EHT Polarimetry Working Group och GenT Distinguished Researcher vid Valencias universitet i Spanien. “Att beräkna denna nya bild av polarisationen tog flera år i anspråk på grund av de komplicerade tekniker som krävdes för att samla in och analysera datan”.
Vanligt ljus polariseras när det passerar genom speciella filter, som polariserade solglasögon, eller när det strålar ut från heta områden i rymden som omges av magnetfält. På ett sätt som är analogt med att solglasögonen gör det möjligt att se detaljer genom reducera ljusstarka reflektioner från ljusa objekt, kan astronomerna få bättre insyn i området kring ett svart hål genom att studera dess polariserade strålning. Med polarisationen blir det möjligt att kartlägga hur de magnetiska fältlinjerna fördelar sig i rymden vid gränsen till det svarta hålet.
“De nya bilderna över polarisationen hjälper oss att förstå hur magnetfältet styr hur material faller in i det svarta hålet och hur det kan skapa energirika jetstrålar” säger Andrew Chael, medlem i EHT-konsortiet och NASA Hubble Fellow vid Princeton Center for Theoretical Science och Princeton Gravity Initiative i USA.
“Polarisationslinjernas styrka har att göra med magnetfältets styrka. Men det finns också andra faktorer vi måste ta hänsyn till när vi beräknar hur magnetfältets struktur ser ut, som turbulensen i gasen och teleskopets förmåga att urskilja detaljer. Allt detta ingår i våra modeller”, förklarar Iván Martí-Vidal.
De ljusa jetstrålarna av energi och materia som utgår från M87:s kärna sträcker sig minst 5 000 ljusår bort och är en av galaxens mest svårförstådda och energirika fenomen. Det mesta av materialet som befinner sig nära gränsen till det svarta hålet faller in i det, men vissa partiklar lyckas fly undan i sista ögonblicket och kastas istället ut från området i form av jetstrålar.
Det finns flera modeller för hur materia beter sig nära det svarta hålet. Astronomerna vet ännu inte hur jets, som kan vara längre än hela galaxen, kan kastas ut från ett centralt område lika stort som solsystemet, eller hur materia faller in i det svarta hålet. Den nya EHT-bilden ger en första möjlighet att studera området precis utanför det svarta hålet och samverkan mellan infallande och utkastad materia.
Forskarna fann också att de enda teoretiska modellerna som kunde förklara strukturen i det polariserade ljuset baserades på het och starkt joniserad gas som lätt fångas upp av starka magnetiska fält.
“Observationerna indikerar att det magnetiska fältet vid det svarta hålets kant är starkt nog att motverka att den heta gasen dras in i det svarta hålet av den starka gravitationen” förklarar Jason Dexter, biträdande professor vid University of Colorado Boulder, USA, och ledare för EHT Theory Working Group.
Iván Martí-Vidal förklarar vidare att “materian i de relativistiska jetstrålar som uppstår vid det svarta hålet avlägsnar sig från området genom att energi överförs till partiklarna från det svarta hålet. Vi förstår inte detaljerna kring denna process i dag, men vi tror att magnetfältet kan spela en avgörande roll. Genom att studera det polariserade ljuset så nära händelsehorisonten kan vi direkt testa förutsägelserna från våra olika modeller av hur materia faller in i och lämnar det svarta hålet i form av jetstrålar”.
För att observera det svarta hålet i centrum av M87 kopplade astronomerna samman åtta radioteleskop världen över för att skapa ett virtuellt teleskop, EHT, som är lika stort som jorden. I EHT ingår bland annat Atacama Large Millimeter/submillimeter Array (ALMA) och Atacama Pathfinder Experiment (APEX), där ESO är en partner, i norra Chile. Den fantastiska upplösning som nås med EHT kan jämföras med storleken på ett kreditkort på månens avstånd.
“Med ALMA och APEX, som genom sitt sydliga läge dramatiskt utökar storleken på det virtuella EHT-teleskopet, kunde europeiska forskare spela en central roll i forskningsprojektet” säger Ciska Kemper, European ALMA Programme Scientist vid ESO. “Med dess 66 antenner dominerar ALMA helt förmågan att samla in polariserat ljus, medan APEX har varit en kritisk komponent för att kalibrera bilden.”
“ALMA-data var också nödvändiga för att kalibrera, avbilda och förklara EHT-observationerna genom att bidra med strikta gränsvärden för de teoretiska modellerna, som förklarar hur materia beter sig nära det svarta hålets händelsehorisont” kompletterar Ciriaco Goddi, forskare vid Radbouduniversitetet och Leidens observatorium i Nederländerna, som ledde en parallell studie som enbart baserades på ALMA-observationerna.
Forskningsresultaten publiceras i dag av EHT-konsortiet i en artikel i tidskriften The Astrophysical Journal Letters. Forskningsprojektet har involverat över 300 forskare från ett stort antal organisationer och universitet över hela världen.
“EHT utvecklas snabbt med ny teknik och nya deltagande observatorier. Vi förväntar oss att framtida EHT-observationer kommer att avslöja magnetfältsstrukturen runt det svarta hålet i större detaljrikedom och ge mer information om fysiken hos den heta gasen i området” sammanfattar Jongho Park, medlem i EHT-konsortiet och East Asian Core Observatories Association Fellow vid Academia Sinica Institute of Astronomy and Astrophysics i Taipei.
Michael Lindqvist, astronom vid Onsala rymdobservatorium vid Chalmers tekniska högskola i Göteborg, berättar om det svenska bidraget till forskningen: “I Onsala har vi sedan 1960-talet varit delaktiga i utvecklingen av den teknik som kallas långbasinterferometri (VLBI) som nu används av EHT. Onsala rymdobservatorium är en av tre partners som driver APEX, ett av teleskopen i EHT-nätverket, och vi har under flera år arbetat tillsammans med våra partners med att bygga upp VLBI-kapaciteten på APEX.”
“Det svenska bidraget till denna forskning har varit betydande” avslutar Iván Martí-Vidal, som tidigare var verksam vid Onsala rymdobservatorium. “Onsalaobservatoriet har även ansvarat för kalibreringen av ALMA-data och dess roll som en partner i APEX-teleskopet har varit kritiskt för att kunna beräkna och kalibrera för instrumentpolarisationen som uppstår i ALMA”. Noggrann kunskap om denna är avgörande för att kunna dra de slutsatser om det supermassiva svarta hålet som presenteras i dag.
Mer information
Forskningsresultaten presenteras i dag i två artiklar av EHT-konsortiet i The Astrophysical Journal Letters: "First M87 Event Horizon Telescope Results VII: Polarization of the Ring" (doi: 10.3847/2041-8213/abe71d) och "First M87 Event Horizon Telescope Results VIII: Magnetic Field Structure Near The Event Horizon" (doi: 10.3847/2041-8213/abe4de). Kompletterande forskningsresultat presenteras i artikeln “Polarimetric properties of Event Horizon Telescope targets from ALMA" (doi: 10.3847/2041-8213/abee6a) av Goddi, Martí-Vidal, Messias och EHT-konsortiet, som har accepterats för publicering i The Astrophysical Journal Letters.
EHT-konsortiet omfattar över 300 forskare i Afrika, Asien, Europa samt Nord- och Sydamerika. Detta internationella samarbete syftar till att ta de mest detaljerade bilderna någonsin av svarta hål genom att skapa ett virtuellt radioteleskop lika stort som jorden. Inom EHT kopplas enskilda teleskop samman för att uppnå en tidigare ouppnådd vinkelupplösning.
I EHT ingår radioteleskopen ALMA och APEX vid ESO, IRAM:s 30-metersteleskop, IRAM:s NOEMA-observatorium, James Clerk Maxwell Telescope (JCMT), Large Millimeter Telescope (LMT), Submillimeter Telescope (SMT), South Pole Telescope (SPT), Kitt Peak Telescope samt Greenland Telescope (GLT).
I EHT-konsortiet ingår 13 institut: Academia Sinica Institute of Astronomy and Astrophysics, University of Arizona, University of Chicago, East Asian Observatory, Goethe-Universitaet Frankfurt, Institut de Radioastronomie Millimétrique, Large Millimeter Telescope, Max Planck Institute for Radio Astronomy, MIT Haystack Observatory, National Astronomical Observatory of Japan, Perimeter Institute for Theoretical Physics, Radboud University och Smithsonian Astrophysical Observatory.
ESO är Europas främsta mellanstatliga samarbetsorgan för astronomisk forskning och med råge världens mest produktiva astronomiska observatorium. Det har 16 medlemsländer: Belgien, Danmark, Finland, Frankrike, Irland, Italien, Nederländerna, Polen, Portugal, Schweiz, Spanien, Storbritannien, Sverige, Tjeckien, Tyskland och Österrike. ESO:s ambitiösa verksamhet rör design, konstruktion och drift av avancerade markbaserade forskningsanläggningar som gör det möjligt för astronomer att göra banbrytande vetenskapliga upptäckter. ESO spelar dessutom en ledande roll i att främja och organisera samarbeten inom astronomisk forskning. ESO driver tre unika observationsplatser i Chile: La Silla, Paranal och Chajnantor. Vid Paranal finns Very Large Telescope, världens mest avancerade observatorium för synligt ljus, och två kartläggningsteleskop. VISTA arbetar i infrarött ljus och är världens största kartläggningsteleskop och VST (VLT Survey Telescope) är det största teleskopet som konstruerats enbart för att kartlägga himlavalvet i synligt ljus. ESO är en huvudpartner i ALMA, världens hittills största astronomiska projekt. Och på Cerro Armazones, nära Paranal, bygger ESO det extremt stora 39-metersteleskopet för synligt och infrarött ljus, ELT. Det kommer att bli “världens största öga mot himlen”.
ALMA är en internationell anläggning för astronomi och ett samarbete mellan Europa, Nordamerika och Ostasien i samverkan med Chile. I Europa stöds ALMA av ESO, i Nordamerika av US National Science Foundation (NSF) i samarbete med Kanadas National Research Council (NRC) samt av Taiwans Nationella vetenskapsråd (NSC), i Ostasien av Nationella instituten för naturvetenskap (NINS) i Japan i samarbete med Academia Sinica (AS) i Taiwan. Konstruktionen och driften av ALMA leds för Europas del av ESO, för Japan av Nationella astronomiska observatoriet i Japan (NAOJ) och för Nordamerika av National Radio Astronomy Observatory (NRAO), som drivs av Associated Universities, Inc. (AUI). Joint ALMA Observatory (JAO) står för övergripande ledning och organisation under konstruktionen, driftsättningen och driften av ALMA.
Forskargruppen BlackHoleCam är en del av Event Horizon Telescope-konsortiet. Gruppen tilldelades Europeiska forskningsrådets Synergy Grant på 14 miljoner euro 2013. Forskningsledare är Heino Falcke, Luciano Rezzolla och Michael Kramer. De deltagande instituten är JIVE, IRAM, MPE Garching, IRA/INAF Bologna, SKA och ESO.
Länkar
- Forskningsartikar
- EHT:s webbsida
- Bilder på ALMA
- Bilder på APEX
- ESO:s webbsida om EHT
- ESO-blogginlägg om EHT-projektet
- För astronomer: Berätta om din forskning!
Kontakter
Monika Mościbrodzka
Radboud Universiteit
Nijmegen, The Netherlands
Tel: +31-24-36-52485
E-post: m.moscibrodzka@astro.ru.nl
Ivan Martí Vidal
Universitat de València
Burjassot, València, Spain
Tel: +34 963 543 078
E-post: i.marti-vidal@uv.es
Ciska Kemper
European Southern Observatory
Garching bei München, Germany
Tel: +49(0)89-3200-6447
E-post: Francisca.Kemper@eso.org
Andrew Chael
Princeton University Center for Theoretical Science
Princeton, New Jersey, USA
E-post: achael@princeton.edu
Jason Dexter
University of Colorado Boulder
Boulder, Colorado, USA
Tel: +1 303-492-7836
E-post: jason.dexter@colorado.edu
Jongho Park
Academia Sinica, Institute of Astronomy and Astrophysics
Taipei
Tel: +886-2-2366-5462
E-post: jpark@asiaa.sinica.edu.tw
Ciriaco Goddi
Radboud University and Leiden Observatory
Nijmegen and Leiden, The Netherlands
E-post: c.goddi@astro.ru.nl
Sara Issaoun
EHT collaboration member at Radboud Universiteit
Nijmegen, The Netherlands
Tel: +31 (0)6 84526627
E-post: s.issaoun@astro.ru.nl
Huib Jan van Langevelde
EHT Project Director, Joint Institute for VLBI ERIC
Dwingeloo, The Netherlands
Tel: +31-521-596515
Mobil: +31-62120 1419
E-post: langevelde@jive.eu
Geoffrey C. Bower
EHT Project Scientist, Academia Sinica Institute of Astronomy and Astrophysics
Hilo, HI, USA
Mobil: +1 (510) 847-1722
E-post: gbower@asiaa.sinica.edu.tw
Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Mobil: +49 151 241 664 00
E-post: press@eso.org
Johan Warell (Presskontakt för Sverige)
ESO:s nätverk för vetenskaplig kommunikation
Skurup, Sverige
Tel: +46-706-494731
E-post: eson-sweden@eso.org
Om pressmeddelandet
Pressmeddelande nr: | eso2105sv |
Namn: | Messier 87 |
Typ: | Local Universe : Galaxy : Component : Central Black Hole |
Facility: | Atacama Large Millimeter/submillimeter Array, Atacama Pathfinder Experiment |
Science data: | 2021ApJ...910L..14G |