Communiqué de presse
La "police des trous noirs" découvre un trou noir dormant en dehors de nôtre galaxie
18 juillet 2022
Une équipe d'experts internationaux, réputée pour avoir démystifié plusieurs découvertes de trous noirs, a découvert un trou noir de masse stellaire dans le Grand Nuage de Magellan, une galaxie voisine de la nôtre. « Pour la première fois, notre équipe s'est réunie pour rendre compte de la découverte d'un trou noir, au lieu de la rejeter », explique Tomer Shenar, responsable de l'étude. De plus, ils ont constaté que l'étoile qui a donné naissance au trou noir a disparu sans aucun signe d'une puissante explosion. La découverte a été réalisée grâce à six années d'observations effectuées avec le Very Large Telescope (VLT) de l'Observatoire Européen Austral (ESO).
« Nous avons identifié une "aiguille dans une botte de foin" », déclare Tomer Shenar, qui a commencé cette étude à la KU Leuven en Belgique [1] et qui est maintenant boursier Marie-Curie à l'université d'Amsterdam, aux Pays-Bas. Bien que d'autres candidats similaires aient été proposés, l'équipe affirme qu'il s'agit du premier trou noir de masse stellaire "dormant" à être détecté sans ambiguïté en dehors de notre galaxie.
Les trous noirs de masse stellaire se forment lorsque des étoiles massives arrivent en fin de vie et s'effondrent sous l'effet de leur propre gravité. Dans une binaire, un système de deux étoiles tournant l'une autour de l'autre, ce processus laisse derrière lui un trou noir en orbite autour d'une étoile compagne lumineuse. Le trou noir est "dormant" s'il n'émet pas de hauts niveaux de rayons X, ce qui est la façon dont ces trous noirs sont généralement détectés. « Il est incroyable que nous ne connaissions pratiquement aucun trou noir dormant, alors que les astronomes pensent qu'ils sont très répandus », explique le coauteur Pablo Marchant, de la KU Leuven. Le trou noir nouvellement découvert a au moins neuf fois la masse de notre Soleil et tourne autour d'une étoile bleue et chaude pesant 25 fois la masse du Soleil.
Les trous noirs dormants sont particulièrement difficiles à repérer car ils n'interagissent pas beaucoup avec leur environnement. « Cela fait maintenant plus de deux ans que nous recherchons de tels systèmes binaires à trous noirs », explique la coauteure Julia Bodensteiner, chargée de recherche à l'ESO en Allemagne. « J'ai été très enthousiaste lorsque j'ai entendu parler de VFTS 243, qui est à mon avis le candidat le plus convaincant signalé à ce jour. » [2]
Pour trouver VFTS 243, la collaboration a recherché près de 1000 étoiles massives dans la région de la nébuleuse de la Tarentule du Grand Nuage de Magellan, à la recherche de celles qui pourraient avoir des trous noirs comme compagnons. Il est extrêmement difficile d'identifier ces compagnons comme des trous noirs, car il existe de nombreuses autres possibilités.
« En tant que chercheur ayant démystifié des trous noirs potentiels ces dernières années, j'étais extrêmement sceptique quant à cette découverte », déclare Tomer Shenar. Ce scepticisme était partagé par le co-auteur Kareem El-Badry du Center for Astrophysics | Harvard & Smithsonian aux États-Unis, que Tomer Shenar appelle le « destructeur de trous noirs ». « Lorsque Tomer m'a demandé de vérifier ses résultats, j'avais des doutes. Mais je n'ai pas pu trouver d'explication plausible pour les données qui n'impliquaient pas un trou noir », explique Kareem El-Badry.
Cette découverte offre également à l'équipe une vue unique sur les processus qui accompagnent la formation des trous noirs. Les astronomes pensent qu'un trou noir de masse stellaire se forme lorsque le noyau d'une étoile massive mourante s'effondre, mais il n'est pas certain que ce processus s'accompagne ou non d'une puissante explosion de supernova.
« L'étoile qui a formé le trou noir de VFTS 243 semble s'être effondrée entièrement, sans aucun signe d'une explosion antérieure », explique Tomer Shenar. « Des preuves de ce scénario de "collapsus direct" sont apparues récemment, mais notre étude fournit sans doute l'une des indications les plus directes. Cela a d'énormes implications pour l'origine des fusions de trous noirs dans le cosmos. »
Le trou noir de VFTS 243 a été découvert grâce à six années d'observations de la nébuleuse de la Tarentule par l'instrument FLAMES (Fibre Large Array Multi Element Spectrograph) sur le VLT de l'ESO [3].
Malgré son surnom de "police des trous noirs", l'équipe encourage activement l'examen de leur résultat et espère que ses travaux, publiés aujourd'hui dans Nature Astronomy, permettront de découvrir d'autres trous noirs de masse stellaire orbitant autour d'étoiles massives, dont des milliers sont censés exister dans la Voie lactée et dans les nuages de Magellan.
« Bien entendu, je m'attends à ce que d'autres spécialistes examinent attentivement notre analyse et tentent de concevoir d'autres modèles », conclut Kareem. El-Badry. « C'est un projet dans lequel il est très enthousiasment de s’investir ».
Notes
[1] Cette recherche a été menée par une équipe dirigée par Hugues Sana de l'Institut d'astronomie de la KU Leuven
[2] Une étude distincte dirigée par Laurent Mahy, impliquant de nombreux membres de la même équipe et acceptée pour publication dans Astronomy & Astrophysics, fait état d'un autre candidat prometteur pour un trou noir de masse stellaire, dans le système HD 130298 de notre propre galaxie, la Voie lactée.
[3]Les observations utilisées dans l'étude couvrent environ six ans : elles consistent en des données provenant du sondage VLT FLAMES Tarantula (dirigée par Chris Evans, United Kingdom Astronomy Technology Centre, STFC, Royal Observatory, Edinburgh ; maintenant à l'Agence spatiale européenne) obtenues en 2008 et 2009, et des données supplémentaires provenant du programme Tarantula Massive Binary Monitoring (dirigé par Hugues Sana, KU Leuven), obtenues entre 2012 et 2014.
Plus d'informations
Cette recherche a été présentée dans un article intitule “An X-ray quiet black hole born with a negligible kick in a massive binary of the Large Magellanic Cloud” pubilé dans Nature Astronomy (doi: 10.1038/s41550-022-01730-y).
Les recherches qui ont conduit à ces résultats ont été financées par le Conseil européen de la recherche (ER)C dans le cadre du programme de recherche et d'innovation Horizon 2020 de l'Union européenne (convention de subvention n° 772225 : MULTIPLES) (PI : Sana).
L’équipe est composée de T. Shenar (Institute of Astronomy, KU Leuven, Belgium [KU Leuven]; Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands [API]), H. Sana (KU Leuven), L. Mahy (Royal Observatory of Belgium, Brussels, Belgium), K. El-Badry (Center for Astrophysics | Harvard & Smithsonian, Cambridge, USA [CfA]; Harvard Society of Fellows, Cambridge, USA; Max Planck Institute for Astronomy, Heidelberg, Germany [MPIA]), P. Marchant (KU Leuven), N. Langer (Argelander-Institut für Astronomie der Universität Bonn, Germany, Max Planck Institute for Radio Astronomy, Bonn, Germany [MPIfR]), C. Hawcroft (KU Leuven), M. Fabry (KU Leuven), K. Sen (Argelander-Institut für Astronomie der Universität Bonn, Germany, MPIfR), L. A. Almeida (Universidade Federal do Rio Grande do Norte, Natal, Brazil; Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil), M. Abdul-Masih (ESO, Santiago, Chile), J. Bodensteiner (ESO, Garching, Germany), P. Crowther (Department of Physics & Astronomy, University of Sheffield, UK), M. Gieles (ICREA, Barcelona, Spain; Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain), M. Gromadzki (Astronomical Observatory, University of Warsaw, Poland [Warsaw]), V. Henault-Brunet (Department of Astronomy and Physics, Saint Mary’s University, Halifax, Canada), A. Herrero (Instituto de Astrofísica de Canarias, Tenerife, Spain [IAC]; Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain [IAC-ULL]), A. de Koter (KU Leuven, API), P. Iwanek (Warsaw), S. Kozłowski (Warsaw), D. J. Lennon (IAC, IAC-ULL), J. Maíz Apellániz (Centro de Astrobiología, CSIC-INTA, Madrid, Spain), P. Mróz (Warsaw), A. F. J. Moffat (Department of Physics and Institute for Research on Exoplanets, Université de Montréal, Canada), A. Picco (KU Leuven), P. Pietrukowicz (Warsaw), R. Poleski (Warsaw), K. Rybicki (Warsaw and Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Israel), F. R. N. Schneider (Heidelberg Institute for Theoretical Studies, Heidelberg, Germany [HITS]; Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Heidelberg, Germany), D. M. Skowron (Warsaw), J. Skowron (Warsaw), I. Soszyński (Warsaw), M. K. Szymański (Warsaw), S. Toonen (API), A. Udalski (Warsaw), K. Ulaczyk (Department of Physics, University of Warwick, UK), J. S. Vink (Armagh Observatory & Planetarium, UK), and M. Wrona (Warsaw).
L’Observatoire Européen Austral (ESO) permet aux scientifiques du monde entier de découvrir les secrets de l’Univers pour le bénéfice de tous. Nous concevons, construisons et exploitons des observatoires au sol de classe mondiale - que les astronomes utilisent pour s’attaquer à des questions passionnantes et transmettre la fascination de l’astronomie - et nous encourageons la collaboration internationale en astronomie. Créé en 1962 en tant qu’organisation intergouvernementale, l’ESO est aujourd’hui soutenu par 16 États membres (Allemagne, Autriche, Belgique, Danemark, Espagne, France, Finlande, Irlande, Italie, Pays-Bas, Pologne, Portugal, République tchèque, Royaume-Uni, Suède et Suisse), ainsi que par l’État hôte du Chili et l’Australie en tant que partenaire stratégique. Le siège de l’ESO ainsi que son centre d’accueil et son planétarium, l’ESO Supernova, sont situés près de Munich en Allemagne, tandis que le désert chilien d’Atacama, un endroit magnifique offrant des conditions uniques pour observer le ciel, accueille nos télescopes. L’ESO exploite trois sites d’observation : La Silla, Paranal et Chajnantor. À Paranal, l’ESO exploite le Very Large Telescope et son Very Large Telescope Interferometer, ainsi que deux télescopes de sondage, VISTA observant dans l’infrarouge et le VLT Survey Telescope observant dans la lumière visible. Toujours à Paranal, l’ESO accueillera et exploitera le Cherenkov Telescope Array South, l’observatoire de rayons gamma le plus grand et le plus sensible au monde. Avec ses partenaires internationaux, l’ESO exploite APEX et ALMA à Chajnantor, deux installations qui observent le ciel dans le domaine millimétrique et submillimétrique. Au Cerro Armazones, près de Paranal, nous construisons « le plus grand œil au monde tourné vers le ciel » — l’Extremely Large Telescope de l’ESO. Depuis nos bureaux de Santiago du Chili, nous soutenons nos opérations dans le pays et nous nous engageons auprès des partenaires et de la société chiliens.
Liens
- L’article scientifique
- Photos du VLT
- Pour les journalistes : inscrivez-vous pour recevoir les communiqués de presse sous embargo dans votre langue *
- Pour les scientifiques : Une histoire à raconter ? Présentez vos travaux de recherche
Contacts
Tomer Shenar
KU Leuven and University of Amsterdam
Leuven and Amsterdam, Belgium and The Netherlands
Courriel: t.shenar@uva.nl
Julia Bodensteiner
European Southern Observatory
Garching bei München, Germany
Tél: +49-89-3200-6409
Courriel: julia.bodensteiner@eso.org
Kareem El-Badry
Center for Astrophysics | Harvard & Smithsonian
Cambridge, USA
Courriel: kareem.el-badry@cfa.harvard.edu
Pablo Marchant
KU Leuven
Leuven, Belgium
Tél: +32 16 33 05 47
Courriel: pablo.marchant@kuleuven.be
Hugues Sana
KU Leuven
Leuven, Belgium
Tél: +32 479 50 46 73
Courriel: hugues.sana@kuleuven.be
Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tél: +49 89 3200 6670
Mobile: +49 151 241 664 00
Courriel: press@eso.org
Thierry Botti (contact presse pour la France)
Réseau de diffusion scientifique de l'ESO
et Laboratoire d'Astrophysique de Marseille
Marseille, France
Tél: +33 4 95 04 41 06
Courriel: eson-france@eso.org
A propos du communiqué de presse
Communiqué de presse N°: | eso2210fr |
Nom: | Large Magellanic Cloud, VFTS 243 |
Type: | Local Universe : Star : Evolutionary Stage : Black Hole |
Facility: | Very Large Telescope |
Instruments: | FLAMES |
Science data: | 2022NatAs...6.1085S |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.