Pressemitteilung

Astronomen machen Magnetfelder am Rand des Schwarzen Lochs von M87 sichtbar

24. März 2021

Die Event Horizon Telescope (EHT)-Kollaboration, die das erste Bild eines schwarzen Lochs erstellt hat, zeigt heute einen neuen Blick auf das gewaltige Objekt im Zentrum der Galaxie Messier 87 (M87): sein Aussehen in polarisiertem Licht. Es ist das erste Mal, dass Astronomen die Polarisation, eine Signatur von Magnetfeldern, so nah am Rande eines schwarzen Lochs messen konnten. Die Beobachtungen sind der Schlüssel zur Erklärung, wie die 55 Millionen Lichtjahre entfernte Galaxie M87 in der Lage ist, energetische Jets von ihrem Kern auszustoßen.

Wir sehen jetzt das nächste entscheidende Puzzleteil für das Verständnis, wie sich Magnetfelder um schwarze Löcher herum verhalten und wie die Aktivität in diesen sehr kompakten Regionen des Weltraums starke Jets antreiben kann, die sich weit über die Galaxie hinaus erstrecken“, sagt Monika Mościbrodzka, Koordinatorin der EHT Polarimetrie-Arbeitsgruppe und Assistenzprofessorin an der Radboud Universität in den Niederlanden.

Am 10. April 2019 veröffentlichten die Wissenschaftler das allererste Bild eines schwarzen Lochs, das eine helle ringförmige Struktur mit einer dunklen zentralen Region – dem Schatten des schwarzen Lochs – zeigt. Seitdem hat sich die EHT-Kollaboration eingehender mit den 2017 gesammelten Daten vom supermassereichen Objekt im Herzen der Galaxie M87 beschäftigt. Sie haben entdeckt, dass ein signifikanter Anteil des Lichts um das schwarze Loch von M87 polarisiert ist.

Diese Arbeit ist ein wichtiger Meilenstein: Die Polarisation des Lichts birgt Informationen, die es uns erlauben, die Physik hinter dem Bild, das wir im April 2019 gesehen haben, besser zu verstehen. Das war vorher nicht möglich“, erklärt Iván Martí-Vidal, ebenfalls Koordinator der EHT-Polarimetrie-Arbeitsgruppe und GenT Distinguished Researcher an der Universität von Valencia, Spanien. Er fügt hinzu, dass „die Erstellung dieses neuen Polarisationsbildes jahrelange Arbeit erforderte, da die Gewinnung und Analyse der Daten mit komplexen Techniken verbunden war.“

Licht wird polarisiert, wenn es bestimmte Filter durchläuft, wie die Gläser von polarisierten Sonnenbrillen, oder wenn es in heißen Regionen des Weltraums emittiert wird, in denen Magnetfelder vorhanden sind. Genauso wie polarisierte Sonnenbrillen uns helfen, besser zu sehen, indem sie Reflexionen und Blendungen von hellen Oberflächen reduzieren, können Astronomen ihren Blick auf die Region um das schwarze Loch schärfen, indem sie sich ansehen, wie das von ihm ausgehende Licht polarisiert ist. Insbesondere erlaubt die Polarisation den Astronomen, die Magnetfeldlinien zu kartieren, die am inneren Rand des schwarzen Lochs vorhanden sind.

Die neu veröffentlichten polarisierten Bilder sind der Schlüssel zum Verständnis, wie das Magnetfeld es dem schwarzen Loch ermöglicht, Materie zu verschlingen“, sagt EHT-Kollaborationsmitglied Andrew Chael, ein NASA Hubble Fellow am Princeton Center for Theoretical Science und der Princeton Gravity Initiative in den USA.

Die hellen Energie- und Materiejets, die aus dem Kern von M87 entspringen und sich mindestens über 5000 Lichtjahre von seinem Zentrum ausbreiten, sind eines der geheimnisvollsten und energiereichsten Merkmale der Galaxie. Die meiste Materie, die sich in der Nähe des Randes eines schwarzen Lochs befindet, fällt hinein. Einige der umgebenden Teilchen entkommen jedoch kurz vor dem Einfangen und werden in Form von Jets weit ins All hinausgeschleudert.

Um diesen Prozess besser zu verstehen, haben sich Astronomen auf verschiedene Modelle gestützt, wie sich Materie in der Nähe des schwarzen Lochs verhält. Aber sie wissen immer noch nicht genau, wie die Jets, die größer als die Galaxie sind, aus seiner zentralen Region ausgestoßen werden, die von ihrer Ausdehnung her mit dem Sonnensystem vergleichbar ist, noch wie genau die Materie in das schwarze Loch fällt. Mit der neuen EHT-Aufnahme des schwarzen Lochs und seines Schattens in polarisiertem Licht ist es den Astronomen erstmals gelungen, in die Region dicht außerhalb des schwarzen Lochs zu blicken, in der dieses Wechselspiel zwischen einströmender und herausgeschleuderter Materie stattfindet.

Die Beobachtungen liefern neue Informationen über die Struktur der Magnetfelder direkt außerhalb des schwarzen Lochs. Das Team fand heraus, dass nur theoretische Modelle mit stark magnetisiertem Gas erklären können, was sie am Ereignishorizont sehen.

Die Beobachtungen legen nahe, dass die Magnetfelder am Rand des schwarzen Lochs stark genug sind, um das heiße Gas zurückzudrängen und es dabei zu unterstützen, der Schwerkraft zu widerstehen. Nur das Gas, das durch das Feld schlüpft, kann sich spiralförmig nach innen zum Ereignishorizont bewegen“, erklärt Jason Dexter, Assistenzprofessor an der University of Colorado Boulder, USA, und Koordinator der EHT-Theorie-Arbeitsgruppe.

Um das Herz der Galaxie M87 zu beobachten, verbanden die Forschenden acht Teleskope auf der ganzen Welt, um ein virtuelles erdumspannendes Teleskop, das EHT, zu schaffen. Dazu gehören das im Norden Chiles gelegene Atacama Large Millimeter/submillimeter Array (ALMA) und das Atacama Pathfinder EXperiment (APEX), an dem die Europäische Südsternwarte (ESO) beteiligt ist. Die beeindruckende Auflösung, die mit dem EHT erreicht wird, entspricht der, die benötigt wird, um die Länge einer Kreditkarte auf der Oberfläche des Mondes zu messen.

Durch den Einsatz von ALMA und APEX, die durch ihre südliche Lage die Bildqualität verbessern, indem sie dem EHT-Netzwerk eine zusätzliche geografische Erweiterung geben, haben europäische Wissenschaftler eine zentrale Rolle in der Forschung gespielt“, sagt Ciska Kemper, European ALMA Programme Scientist bei der ESO. „Mit seinen 66 Antennen dominiert ALMA die gesamte Signalsammlung im polarisierten Licht, während APEX für die Kalibrierung des Bildes entscheidend war.

ALMA-Daten trugen ebenfalls entscheidend dazu bei, die EHT-Beobachtungen zu kalibrieren, abzubilden und zu interpretieren. Sie liefern enge Einschränkungen für die theoretischen Modelle, die erklären, wie sich die Materie in der Nähe des Ereignishorizonts des schwarzen Lochs verhält“, fügt Ciriaco Goddi, Wissenschaftler an der Radboud University und dem Leiden Observatory in den Niederlanden, hinzu, der eine begleitende Studie leitete, die sich ausschließlich auf ALMA-Beobachtungen stützte.

Mit der Anordnung des EHT konnte das Team den Schatten des schwarzen Lochs und den ihn umgebenden Lichtring direkt beobachten, wobei das neue Bild mit polarisiertem Licht deutlich zeigt, dass der Ring magnetisiert ist. Die Ergebnisse werden heute in zwei separaten Artikeln in The Astrophysical Journal Letters von der EHT-Kollaboration veröffentlicht. An der Forschung waren mehr als 300 Forscher aus verschiedenen Organisationen und Universitäten weltweit beteiligt.

Das EHT macht rasante Fortschritte, das Netzwerk wird technologisch aufgerüstet und neue Observatorien werden hinzugefügt. Wir erwarten, dass zukünftige EHT-Beobachtungen die Magnetfeldstruktur um das schwarze Loch genauer abbilden und uns mehr über die Physik des heißen Gases in dieser Region verraten werden“, schließt EHT-Kollaborationsmitglied Jongho Park, ein East Asian Core Observatories Association Fellow am Academia Sinica Institute of Astronomy and Astrophysics in Taipeh.

Weitere Informationen

Diese Forschungsergebnisse wurden in zwei Artikeln der EHT-Kollaboration beschrieben, die heute in The Astrophysical Journal Letters veröffentlicht wurden: „First M87 Event Horizon Telescope Results VII: Polarization of the Ring“ (doi: 10.3847/2041-8213/abe71d) und „First M87 Event Horizon Telescope Results VIII: Magnetic Field Structure Near The Event Horizon“ (doi: 10.3847/2041-8213/abe4de). Begleitende Forschung wird in der Arbeit „Polarimetric properties of Event Horizon Telescope targets from ALMA“ (doi: 10.3847/2041-8213/abee6a) von Goddi, Martí-Vidal, Messias und der EHT-Kollaboration vorgestellt, die zur Veröffentlichung in The Astrophysical Journal Letters angenommen wurde.

An der EHT-Kollaboration sind mehr als 300 Forscher aus Afrika, Asien, Europa, Nord- und Südamerika beteiligt. Die internationale Partnerschaft arbeitet daran, die detailliertesten Bilder von schwarzen Löchern zu erhalten, die je gemacht wurden, indem sie ein virtuelles Teleskop von der Größe der Erde entwickelt. Unterstützt durch beträchtliche internationale Investitionen, verbindet das EHT bestehende Teleskope mit neuartigen Systemen und schafft so ein grundlegend neues Instrument mit dem höchsten Winkelauflösungsvermögen, das bislang erreicht wurde.

Die beteiligten Einzelteleskope sind: ALMA, APEX, das 30-Meter-Teleskop des Institut de Radioastronomie Millimetrique (IRAM), das IRAM NOEMA Observatorium, das James Clerk Maxwell Teleskop (JCMT), das Large Millimeter Telescope (LMT), das Submillimeter Array (SMA), das Submillimeter Teleskop (SMT), das South Pole Telescope (SPT), das Kitt Peak Teleskop und das Greenland Telescope (GLT).

Das EHT-Konsortium besteht aus 13 beteiligten Instituten: Das Academia Sinica Institute of Astronomy and Astrophysics, die University of Arizona, die University of Chicago, das East Asian Observatory, die Goethe-Universität Frankfurt, das Institut de Radioastronomie Millimétrique, das Large Millimeter Telescope, das Max-Planck-Institut für Radioastronomie, das MIT Haystack Observatory, das National Astronomical Observatory of Japan, das Perimeter Institute for Theoretical Physics, die Radboud University und das Smithsonian Astrophysical Observatory.

Die ESO ist die wichtigste zwischenstaatliche Organisation für Astronomie in Europa und das bei weitem produktivste bodengebundene astronomische Observatorium der Welt. Sie hat 16 Mitgliedsstaaten: Belgien, Dänemark, Deutschland, Frankreich, Finnland, Irland, Italien, die Niederlande, Österreich, Polen, Portugal, Schweden, die Schweiz, Spanien, die Tschechische Republik und das Vereinigte Königreich, sowie den Gaststaat Chile und Australien als strategischen Partner. Die ESO führt ein ehrgeiziges Programm durch, das sich auf die Planung, den Bau und den Betrieb leistungsfähiger bodengebundener Beobachtungseinrichtungen konzentriert, die es Astronomen ermöglichen, wichtige wissenschaftliche Entdeckungen zu machen. Die ESO spielt auch eine führende Rolle bei der Förderung und Organisation der Zusammenarbeit in der astronomischen Forschung. Die ESO betreibt drei einzigartige Beobachtungsstandorte von Weltrang in Chile: La Silla, Paranal und Chajnantor. In Paranal betreibt die ESO das Very Large Telescope und sein weltweit führendes Very Large Telescope Interferometer sowie zwei Durchmusterungsteleskope, VISTA, das im Infraroten arbeitet, und das VLT Survey Telescope im sichtbaren Licht. Ebenfalls am Paranal wird die ESO das Cherenkov Telescope Array South, das größte und empfindlichste Gammastrahlen-Observatorium der Welt, betreiben. Die ESO ist zudem ein wichtiger Partner bei zwei Anlagen auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones, in der Nähe des Paranal, baut die ESO das 39-Meter-Extremely Large Telescope, das ELT, das „das größte Auge der Welt am Himmel“ wird.

Das Atacama Large Millimeter/submillimeter Array (ALMA), eine internationale astronomische Einrichtung, ist eine Partnerschaft der ESO, der U.S. National Science Foundation (NSF) und der National Institutes of Natural Sciences (NINS) of Japan in Zusammenarbeit mit der Republik Chile. ALMA wird von der ESO im Namen ihrer Mitgliedsstaaten, von der NSF in Zusammenarbeit mit dem National Research Council of Canada (NRC) und dem Ministry of Science and Technology (MOST) und vom NINS in Zusammenarbeit mit der Academia Sinica (AS) in Taiwan und dem Korea Astronomy and Space Science Institute (KASI) finanziert. Bau und Betrieb von ALMA werden von der ESO im Auftrag ihrer Mitgliedsstaaten geleitet; vom National Radio Astronomy Observatory (NRAO), das von Associated Universities, Inc. (AUI) für Nordamerika und das National Astronomical Observatory of Japan (NAOJ) für Ostasien. Das Joint ALMA Observatory (JAO) übernimmt die einheitliche Leitung und das Management von Bau, Inbetriebnahme und Betrieb von ALMA.

Die BlackHoleCam-Forschungsgruppe wurde 2013 mit dem Synergy Grant des Europäischen Forschungsrats in Höhe von 14 Millionen Euro ausgezeichnet. Die Principal Investigators sind Heino Falcke, Luciano Rezzolla und Michael Kramer und die Partnerinstitute sind JIVE, IRAM, MPE Garching, IRA/INAF Bologna, SKA und ESO. BlackHoleCam ist Teil der Event Horizon Telescope Kollaboration.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Monika Mościbrodzka
Radboud Universiteit
Nijmegen, The Netherlands
Tel: +31-24-36-52485
E-Mail: m.moscibrodzka@astro.ru.nl

Ivan Martí Vidal
Universitat de València
Burjassot, València, Spain
Tel: +34 963 543 078
E-Mail: i.marti-vidal@uv.es

Ciska Kemper
European Southern Observatory
Garching bei München, Germany
Tel: +49(0)89-3200-6447
E-Mail: Francisca.Kemper@eso.org

Andrew Chael
Princeton University Center for Theoretical Science
Princeton, New Jersey, USA
E-Mail: achael@princeton.edu

Jason Dexter
University of Colorado Boulder
Boulder, Colorado, USA
Tel: +1 303-492-7836
E-Mail: jason.dexter@colorado.edu

Jongho Park
Academia Sinica, Institute of Astronomy and Astrophysics
Taipei
Tel: +886-2-2366-5462
E-Mail: jpark@asiaa.sinica.edu.tw

Ciriaco Goddi
Radboud University and Leiden Observatory
Nijmegen and Leiden, The Netherlands
E-Mail: c.goddi@astro.ru.nl

Sara Issaoun
EHT collaboration member at Radboud Universiteit
Nijmegen, The Netherlands
Tel: +31 (0)6 84526627
E-Mail: s.issaoun@astro.ru.nl

Huib Jan van Langevelde
EHT Project Director, Joint Institute for VLBI ERIC
Dwingeloo, The Netherlands
Tel: +31-521-596515
Mobil: +31-62120 1419
E-Mail: langevelde@jive.eu

Geoffrey C. Bower
EHT Project Scientist, Academia Sinica Institute of Astronomy and Astrophysics
Hilo, HI, USA
Mobil: +1 (510) 847-1722
E-Mail: gbower@asiaa.sinica.edu.tw

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Mobil: +49 151 241 664 00
E-Mail: press@eso.org

Joerg Gasser (Pressekontakt Schweiz)
ESO Science Outreach Network
E-Mail: eson-switzerland@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso2105.

Über die Pressemitteilung

Pressemitteilung Nr.:eso2105de-ch
Name:Messier 87
Typ:Local Universe : Galaxy : Component : Central Black Hole
Facility:Atacama Large Millimeter/submillimeter Array, Atacama Pathfinder Experiment
Science data:2021ApJ...910L..14G

Bilder

Ein Blick auf das supermassereiche schwarze Loch in M87 im polarisierten Licht
Ein Blick auf das supermassereiche schwarze Loch in M87 im polarisierten Licht
Ansicht des supermassereichen schwarzen Lochs M87 und des Jets in polarisiertem Licht
Ansicht des supermassereichen schwarzen Lochs M87 und des Jets in polarisiertem Licht
Ansicht des Jets von M87 im sichtbaren Licht und Darstellung des Jets und des supermassereichen schwarzen Lochs im polarisierten Licht
Ansicht des Jets von M87 im sichtbaren Licht und Darstellung des Jets und des supermassereichen schwarzen Lochs im polarisierten Licht
Mit ALMA erzeugtes Bild von M87 im polarisierten Licht
Mit ALMA erzeugtes Bild von M87 im polarisierten Licht
Das erste Bild eines schwarzen Lochs
Das erste Bild eines schwarzen Lochs
Eine Aufnahme von Messier 87 mit dem Very Large Telescope
Eine Aufnahme von Messier 87 mit dem Very Large Telescope
Künstlerische Darstellung des schwarzen Lochs im Zentrum von M87
Künstlerische Darstellung des schwarzen Lochs im Zentrum von M87
Messier 87 im Sternbild Jungfrau
Messier 87 im Sternbild Jungfrau
Der zentrale Beitrag von ALMA und APEX zum EHT
Der zentrale Beitrag von ALMA und APEX zum EHT

Videos

ESOcast 235 Light: Astronomen bilden Magnetfelder am Rande eines schwarzen Lochs ab
ESOcast 235 Light: Astronomen bilden Magnetfelder am Rande eines schwarzen Lochs ab
Zoom in das Herz von M87, um einen neuen Blick auf sein schwarzes Loch zu werfen
Zoom in das Herz von M87, um einen neuen Blick auf sein schwarzes Loch zu werfen

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.