Pressemitteilung

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17. Januar 2018

Astronomen unter der Leitung von Benjamin Giesers von der Georg-August-Universität Göttingen haben mit dem MUSE-Instrument der ESO am Very Large Telescope in Chile einen Stern in dem Sternhaufen NGC 3201 entdeckt, der sich sehr seltsam verhält. Es scheint ein unsichtbares Schwarzes Loch mit etwa der vierfachen Masse der Sonne zu umkreisen - das erste inaktive Schwarze Loch mit stellarer Masse, das in einem Kugelsternhaufen gefunden wurde, und gleichzeitig auch das erste, das durch den direkten Nachweis seiner Anziehungskraft gefunden wurde. Diese wichtige Entdeckung wirkt sich auf unser Verständnis der Entstehung dieser Sternhaufen, Schwarzer Löcher allgemein und dem Ursprung von Gravitationswellenereignissen aus.

Kugelsternhaufen sind riesige, kugelförmige Ansammlungen von Zehntausenden von Sternen, die die meisten Galaxien umkreisen. Sie gehören zu den ältesten bekannten Sternsystemen im Universum und gehen auf den Beginn des Wachstums und der Evolution von Galaxien zurück. Mehr als 150 Kugelsternhaufen, die zur Milchstraße gehören, sind derzeit bekannt.

Einer dieser Sternhaufen, NGC 3201 im südlichen Sternbild Vela (das Segel des Schiffs Argo), wurde jetzt mit dem MUSE-Instrument am Very Large Telescope der ESO in Chile näher untersucht. Ein internationales Astronomenteam mit starker deutscher Beteiligung hat festgestellt, dass sich einer der Sterne [1] in NGC 3201 sehr merkwürdig verhält – er wird mit Geschwindigkeiten von mehreren hunderttausend Kilometern pro Stunde hin- und hergeschleudert, wobei sich dieses Muster alle 167 Tage wiederholt [2].

Erstautor Benjamin Giesers von der Georg-August-Universität Göttingen war von dem Verhalten des Sterns fasziniert: "Er umkreiste etwas vollkommen Unsichtbares, das eine Masse hatte, die mehr als viermal so groß war wie die Sonne – das kann nur ein Schwarzes Loch sein! Das erste Schwarze Loch in einem Kugelsternhaufen übrigens, das sich direkt über seine Anziehungskraft bemerkbar gemacht hat."

Die Beziehung zwischen Schwarzen Löchern und Kugelsternhaufen ist bedeutsam, aber auch geheimnisvoll. Aufgrund ihrer großen Massen und ihres großen Alters geht man davon aus, dass diese Sternhaufen eine große Anzahl von Schwarzen Löchern mit stellaren Massen erzeugt haben – sie sind im Laufe des langen Lebens des Sternhaufens entstanden, immer dann wenn massereiche Sterne explodiert und die Überreste in sich zusammengefallen sind [3] [4].

Das MUSE-Instrument der ESO bietet Astronomen die einzigartige Möglichkeit, die Bewegungen von Tausenden von weit entfernten Sternen gleichzeitig zu messen. Mit dieser neuen Entdeckung ist es dem Team erstmals gelungen, ein inaktives Schwarzes Loch im Herzen eines Kugelsternhaufens zu entdecken – ein Schwarzes Loch, das sich derzeit keine Materie einverleibt und nicht von einer hell leuchtenden Gasscheibe umgeben ist. Sie konnten die Masse des Schwarzen Lochs durch die Bewegungen eines Sterns ergründen, der durch die enormen Gravitationskraft des Schwarzen Lochs gefangen ist [5].

Aus den Beobachtungen lässt sich ermitteln, dass der Stern die 0,8-fache der Masse unserer Sonne hat, während sich für die Masse seines mysteriösen Gegenstücks das 4,36-fache der Masse der Sonne ergeben hat - mit ziemlicher Sicherheit also ein Schwarzes Loch[6].

Kürzlich erfolgte Nachweise von Radio- und Röntgenquellen in Kugelsternhaufen sowie die Detektion von Gravitationswellensignalen, die durch das Zusammenführen von zwei Schwarzen Löchern mit Sternmasse erzeugt wurden, deuten darauf hin, dass diese relativ kleinen Schwarzen Löcher in Kugelsternhaufen häufiger vorkommen könnten als bisher angenommen.

Giesers schlussfolgert: "Bis vor kurzem ging man davon aus, dass fast alle Schwarzen Löcher nach kurzer Zeit aus den Kugelsternhaufen verschwinden würden und dass solche Systeme gar nicht existieren sollten! Aber offensichtlich ist dies nicht der Fall – unsere Entdeckung ist der erste direkte Nachweis der Gravitationswirkung eines Schwarzen Lochs in einem Kugelsternhaufen. Diese Erkenntnis hilft, die Entstehung von Kugelhaufen und die Entwicklung von Schwarzen Löchern und entsprechenden Binärsystemen nachzuvollziehen, was für das Verständnis von Gravitationswellenquellen unerlässlich ist."

Endnoten

[1] Der gefundene Stern befindet sich am Abknickpunkt der Hauptreihe, damit befindet er sich am Ende der langen Hauptreihenphase seines Lebens. Nachdem er seinen Wasserstoffvorrat aufgebraucht hat, ist er nun auf dem Weg, ein Roter Riese zu werden.

[2] Derzeit wird mit Unterstützung des MUSE-Konsortiums der ESO eine umfangreiche Untersuchung von 25 Kugelsternhaufen rund um die Milchstraße durchgeführt. Die Astronomen erhalten darüber Spektren von 600 bis 27.000 Sternen in jedem dieser Sternhaufen. Die Studie beinhaltet die Analyse der sogenannten Radialgeschwindigkeit einzelner Sterne - die Geschwindigkeit, mit der sie sich entlang der Sehlinie des Betrachters in Richtung zur Erde und von ihr wegbewegen. Mit solchen Radialgeschwindigkeitsmessungen können die Umlaufbahnen von Sternen und die Eigenschaften von massereichen Objekten, die sie umkreisen, bestimmt werden.

[3] Findet keine kontinuierliche Sternentstehung statt, so wie es bei Kugelhaufen der Fall ist, werden Schwarze Löcher mit der Sternmasse bald zu den massereichsten Objekten, die es gibt. Im Durchschnitt sind stellare Schwarze Löcher der Kugelsternhaufen etwa viermal so massereich wie die sie umgebenden massearmen Sterne. Neuere Theorien kommen zu dem Schluss, dass die Schwarzen Löcher einen dichten Kern innerhalb des Sternhaufens bilden, der sich dann vom Rest des kugelförmigen Materials löst. Die Bewegungen im Zentrum des Sternhaufens katapultieren dann die meisten Schwarzen Löcher aus dem Haufen heraus, so dass nur wenige von ihnen nach einer Milliarde Jahren überlebt haben.

[4] Stellare Schwarze Löcher der Sternmasse - auch Kollapsare genannt - entstehen, wenn massereiche Sterne sterben, unter ihrer eigenen Schwerkraft zusammenbrechen und als mächtige Hypernovae explodieren. Zurück bleibt ein Schwarzes Loch mit einem Großteil der Masse des ehemaligen Sterns, das von der mehrfachen Masse unserer Sonne bis hin zu mehreren Dutzend Mal so massereich reichen kann.

[5] Da auch Licht nicht in der Lage ist, der enormen Schwerkraft Schwarzer Löcher zu entkommen, ist die primäre Methode, sie zu nachzuweisen, die Beobachtung von Radio- oder Röntgenstrahlung, die von heißem Material um sie herum ausgeht. Wenn aber ein Schwarzes Loch nicht mit heißer Materie interagiert und somit keine Masse ansammelt oder Strahlung abgibt, wie in diesem Fall, ist das Schwarze Loch "inaktiv" und unsichtbar, so dass eine andere Nachweismethode erforderlich ist.

[6] Da das nicht-leuchtende Objekt in diesem Binärsystem nicht direkt beobachtet werden kann, gibt es alternative, wenn auch weniger überzeugende Erklärungen dafür, um was es sich handeln könnte. In Frage käme zum Beispiel ein Dreifachsystem, das aus zwei eng aneinander gebundenen Neutronensternen besteht, um die sich der beobachtete Stern kreist. Dieses Szenario würde erfordern, dass jeder der beiden Neutronensterne mindestens die doppelte Masse unserer Sonne hat, ein solches Doppelsystem wurde aber noch nie beobachtet.

Weitere Informationen

Die hier präsentierten Forschungsergebnisse von B. Giesers et al. erscheinen demnächst unter dem Titel "A detached stellar-mass black hole candidate in the globular cluster NGC 3201"  in der Zeitschrift Monthly Notices of the Royal Astronomical Society.

Die beteiligten Wissenschaftlerinnen und Wissenschaftler sind Benjamin Giesers (Georg-August-Universität Göttingen, Deutschland), Stefan Dreizler (Georg-August-Universität Göttingen, Deutschland), Tim-Oliver Husser (Georg-August-Universität Göttingen, Deutschland), Sebastian Kamann (Georg-August-Universität Göttingen, Deutschland); Liverpool John Moores University, Großbritannien), Guillem Anglada Escudé (Queen Mary University of London, Großbritannien), Jarle Brinchmann (Sterrewacht Leiden, Universiteit Leiden, Niederlande; Universidade do Porto, CAUP, Porto, Portugal), C. Marcella Carollo (Eidgenössische Technische Hochschule, ETH, Zürich, Schweiz) Martin M. Roth (Leibniz-Institut für Astrophysik Potsdam, Deutschland), Peter M. Weilbacher (Leibniz-Institut für Astrophysik Potsdam, Deutschland) und Lutz Wisotzki (Leibniz-Institut für Astrophysik Potsdam, Deutschland).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das Extremely Large Telescope (ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Benjamin Giesers
Georg-August-Universität Göttingen
Göttigen, Germany
E-Mail: giesers@astro.physik.uni-goettingen.de

Stefan Dreizler
Georg-August-Universität Göttingen
Göttigen, Germany
E-Mail: dreizler@astro.physik.uni-goettingen.de

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Joerg Gasser (Pressekontakt Schweiz)
ESO Science Outreach Network
E-Mail: eson-switzerland@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1802.

Über die Pressemitteilung

Pressemitteilung Nr.:eso1802de-ch
Name:NGC 3201
Typ:Milky Way : Star : Evolutionary Stage : Black Hole
Milky Way : Star : Grouping : Cluster : Globular
Facility:Very Large Telescope
Instruments:MUSE
Science data:2018MNRAS.475L..15G

Bilder

Künstlerische Darstellung des Binärsystems mit Schwarzem Loch in NGC 3201
Künstlerische Darstellung des Binärsystems mit Schwarzem Loch in NGC 3201
Hubble-Bild des Kugelsternhaufens NGC 3201 (beschriftet)
Hubble-Bild des Kugelsternhaufens NGC 3201 (beschriftet)
Weitwinkelaufnahme der Himmelsregion um den Kugelsternhaufen NGC 3201
Weitwinkelaufnahme der Himmelsregion um den Kugelsternhaufen NGC 3201
Der Kugelsternhaufen NGC 3201
Der Kugelsternhaufen NGC 3201
Hubble-Bild des Kugelsternhaufens NGC 3201 (unbeschriftet)
Hubble-Bild des Kugelsternhaufens NGC 3201 (unbeschriftet)
Der Kugelsternhaufen NGC 3201 im Sternbild Vela (das Segel des Schiffs Argo)
Der Kugelsternhaufen NGC 3201 im Sternbild Vela (das Segel des Schiffs Argo)

Videos

ESOcast 146 Light: Seltsames Verhalten des Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
ESOcast 146 Light: Seltsames Verhalten des Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
Zoom auf den Kugelsternhaufen NGC 3201
Zoom auf den Kugelsternhaufen NGC 3201
Animation des Binärsystems mit Schwarzem Loch in NGC 3201
Animation des Binärsystems mit Schwarzem Loch in NGC 3201
Artist’s impression video of the black hole binary system in NGC 3201
Artist’s impression video of the black hole binary system in NGC 3201
nur auf Englisch
Artist’s impression video of the black hole binary system in NGC 3201
Artist’s impression video of the black hole binary system in NGC 3201
nur auf Englisch

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.