Pressemitteilung

Hochmodernes System Adaptiver Optik sieht erstes Licht

Deutliche Verbesserung in der Schärfe von MUSE-Aufnahmen

2. August 2017

Nach mehr als einem Jahrzehnt der Planung, Konstruktion und Erprobung hat die Adaptive Optics Facility (AOF) mit dem Instrument MUSE erstes Licht gesehen und verblüffend scharfe Bilder von planetarischen Nebeln und Galaxien aufgenommen. Das Hauptteleskop 4 (Yepun) am Very Large Telescope (VLT) der ESO ist dadurch nun ein vollständig adaptives Teleskop. Durch die Kopplung der AOF mit MUSE wird es zu einem der fortschrittlichsten und leistungsstärksten Systeme, die je für die bodengebundene Astronomie gebaut wurden.

Die Adaptive Optics Facility (AOF) ist ein Langzeitprojekt am Very Large Telescope (VLT) der ESO, um ein System Adaptiver Optik für die Instrumente am Hauptteleskop 4 ( engl. Unit Telescope 4, kurz UT4) zur Verfügung zu stellen, zu denen auch MUSE (Multi Unit Spectroscopic Explorer) gehört [1]. Da durch den Einfluss der Erdatmosphäre Bilder verschwimmen, soll Adaptive Optik diese störenden Effekte kompensieren, so dass MUSE viel schärfere Aufnahmen machen kann. Da der Kontrast doppelt so hoch wie ohne diese Technik ist, kann MUSE nun noch lichtschwächere Objekte im Universum beobachten

Selbst wenn die Wetterbedingungen nicht perfekt sind, können Astronomen nun dank der AOF eine hervorragende Bildqualität erreichen“, erklärt Harald Kuntschner, AOF-Projektwissenschaftler bei der ESO.

Nachdem das neue System auf Herz und Nieren geprüft wurde, wurde das Team aus Astronomen und Ingenieuren mit einer Reihe eindrucksvoller Bilder belohnt. Den Forschern gelang beispielsweise die Beobachtung der planetarischen Nebel IC 4406 im Sternbild Wolf (lat. Lupus), sowie NGC 6369 im Sternbild Schlangenträger (gr. Ophiuchus). Die MUSE-Beobachtungen mit der AOF brachten tiefgreifende Verbesserungen in der Schärfe der Aufnahmen und enthüllten nie zuvor beobachtete Schalenstrukturen in IC 4406 [2].

Die AOF, die diese Beobachtungen ermöglicht hat, setzt sich aus vielen Teilen zusammen. Dazu gehören die Four Laser Guide Star Facility (4LGSF) und der sehr dünne verformbare Sekundärspiegel des UT4 [3] [4]. Die 4LGSF leuchtet mit vier 22-Watt-Laserstrahlen in den Himmel, um in der oberen Atmosphäre Natriumatome zum Leuchten zu bringen, wodurch am Himmel Lichtpunkte entstehen, die Sterne imitieren sollen. Sensoren im Adaptive-Optik-Modul GALACSI (Ground Atmospheric Layer Adaptive Corrector for Spectroscopic Imaging) verwenden diese künstlichen Laserleitsterne, um die atmosphärischen Bedingungen zu bestimmen.

Tausendmal pro Sekunde berechnet das AOF-System die notwendige Korrektur, um die Form des Sekundärspiegels des Teleskops anzupassen und so die atmosphärischen Störungen auszugleichen. Vor allem bis zu einer Höhe von einem Kilometer über dem Teleskop gleicht GALACSI die Turbulenz in der Atmosphärenschicht aus. Abhängig von den Bedingungen kann die atmosphärische Turbulenz mit der Höhe variieren, aber Untersuchungen haben gezeigt, dass die meisten atmosphärischen Störungen in dieser „Grundschicht“ der Atmosphäre auftreten.

Das AOF-System bewirkt im Prinzip einen ähnlichen Effekt, wie wenn wir das VLT um etwa 900 Meter anheben würden, über die turbulentesten Schichten in der Atmosphäre“, erklärt Robin Asenault, AOF-Projektleiter. „Wenn wir in der Vergangenheit schärfere Aufnahmen gewollt hätten, hätten wir einen besseren Ort finden oder ein Weltraumteleskop benutzen müssen – mit der AOF können wir jetzt einfach dort wo wir sind die Bedingungen deutlich verbessern, und das zu einem Bruchteil der Kosten.

Die von der AOF angewandten Korrekturen verbessern die Bildqualität umgehend und kontinuierlich, indem sie das Licht konzentrieren, um schärfere Bilder zu erzeugen, so dass MUSE feinere Details auflösen und lichtschwächere Sterne erkennen kann als bisher möglich. GALACSI bietet derzeit eine Korrektur über ein weites Sichtfeld, aber das ist nur einer von vielen Schritten, um MUSE mit Adaptiver Optik auszurüsten. Ein zweiter Modus von GALACSI ist in Vorbereitung und wird voraussichtlich Anfang 2018 das erste Licht sehen. Dieser Schmalfeldmodus korrigiert die Turbulenz in jeder Höhe, so dass Beobachtungen kleinerer Gesichtsfelder mit noch höherer Auflösung durchgeführt werden können.

Vor sechzehn Jahren, als wir den Bau des revolutionären MUSE-Instruments planten, war unsere Vision, es mit einem anderen sehr fortschrittlichen System zu koppeln, der AOF“, erzählt Roland Bacon, Projektleiter für MUSE. „Das bereits große Entdeckungspotential von MUSE wird nun weiter verbessert. Unser Traum wird Wirklichkeit.

Eines der wichtigsten wissenschaftlichen Ziele des Systems ist es, lichtschwache Objekte im fernen Universum mit der bestmöglichen Bildqualität zu beobachten, was Belichtungen von mehreren Stunden erfordern wird. Joël Vernet, MUSE- und GALACSI-Projektwissenschaftler, erläutert hierzu: „Insbesondere sind wir daran interessiert, die kleinsten, lichtschwächsten Galaxien in den größten Entfernungen zu beobachten. Diese Galaxien entstehen gerade erst – stecken also quasi noch in den Kinderschuhen – und sind der Schlüssel zum Verständnis, wie sich Galaxien bilden.

Darüber hinaus ist MUSE nicht das einzige Instrument, das von der AOF profitieren wird. In naher Zukunft wird ein weiteres System Adaptiver Optik namens GRAAL mit dem bestehenden Infrarot-Instrument HAWK-I in Betrieb gehen und dessen Blick auf das Universum noch schärfer machen. Es soll später von dem leistungsstarken neuen Instrument ERIS abgelöst werden.

Die ESO treibt die Entwicklung dieser Systeme Adaptiver Optiken voran, außerdem ist die AOF auch ein Wegbereiter für das Extremely Large Telescope der ESO“, fügt Arsenault hinzu. „Durch die Arbeit an der AOF haben wir – Wissenschaftler, Ingenieure und ebenso die Industrie – Erfahrungen und Fachkenntnisse von unschätzbarem Wert gewonnen, die wir nun dafür verwenden werden, die Herausforderungen beim Bau des ELT zu meistern.“

Endnoten

[1] MUSE ist ein Integralfeld-Spektrograf, ein leistungsfähiges Instrument, das einen 3D-Datensatz eines Zielobjekts erzeugt, wobei jeder Bildpixel einem Spektrum des Lichts des Objekts entspricht. Dies bedeutet im Wesentlichen, dass das Instrument Tausende Bilder des Objekts zur gleichen Zeit erzeugt, jeweils bei einer anderen Wellenlänge des Lichts, sodass es eine Fülle von Informationen erfassen kann.

[2] IC 4406 wurde vor vielen Jahren schonmal mit dem VLT (eso9827a) beobachtet.

[3] Mit knapp über einem Meter Durchmesser ist dies der größte Adaptive-Optik-Spiegel, der jemals produziert wurde und hochmoderne Technologie erfordert hat. Er wurde im Jahr 2016 am UT4 (ann16078) montiert, um den ursprünglichen konventionellen Sekundärspiegel des Teleskops zu ersetzen.

[4] Weitere Werkzeuge zur Optimierung des AOF-Prozesses wurden entwickelt und sind nun betriebsbereit. Dazu gehören eine Erweiterung der Astronomical Site Monitor Software, die die Atmosphäre überwacht, um die Höhe zu bestimmen, in der die Turbulenz auftritt, und das Laser Traffic Control System (LTCS), das verhindern soll, dass andere Teleskope in die Laserstrahlen oder auf die künstlichen Sterne selbst blicken und möglicherweise ihre Beobachtungen gestört werden.

Weitere Informationen

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist außerdem einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Harald Kuntschner
ESO, AOF Project Scientist
Garching bei München, Germany
Tel: +49 89 3200 6465
E-Mail: hkuntsch@eso.org

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Joël Vernet
ESO MUSE and GALACSI Project Scientist
Garching bei München, Germany
Tel: +49 89 3200 6579
E-Mail: jvernet@eso.org

Joerg Gasser (Pressekontakt Schweiz)
ESO Science Outreach Network
E-Mail: eson-switzerland@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1724.

Über die Pressemitteilung

Pressemitteilung Nr.:eso1724de-ch
Name:Adaptive Optics Facility, MUSE
Typ:Unspecified : Technology : Observatory : Facility
Facility:Adaptive Optics Facility
Instruments:MUSE

Bilder

Der planetarische Nebel IC 4406
Der planetarische Nebel IC 4406
NGC 6369 vor und nach der AOF
NGC 6369 vor und nach der AOF
The planetary nebula NGC 6563 observed with the AOF
The planetary nebula NGC 6563 observed with the AOF
nur auf Englisch
Die AOF + MUSE bei der Arbeit
Die AOF + MUSE bei der Arbeit
Die AOF + MUSE bei der Arbeit
Die AOF + MUSE bei der Arbeit
UT4 und die AOF bei der Arbeit
UT4 und die AOF bei der Arbeit
Die leistungsstarken Laser der AOF
Die leistungsstarken Laser der AOF
Beobachtungen des planetarischen Nebels NGC 6563 mit MUSE und der AOF
Beobachtungen des planetarischen Nebels NGC 6563 mit MUSE und der AOF

Videos

ESOcast 119: Erstes Licht für die AOF
ESOcast 119: Erstes Licht für die AOF
NGC 6369 AOF-Überblendung
NGC 6369 AOF-Überblendung

Vergleichsbilder

NGC 6369 mit und ohne AOF
NGC 6369 mit und ohne AOF
NGC 6563 mit und ohne der AOF
NGC 6563 mit und ohne der AOF

Schicken Sie uns Ihre Kommentare!
Abonnieren Sie Nachrichten der ESO in Ihrer Sprache
Beschleunigt durch CDN77
Allgemeine Geschäftsbedingungen
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.