Pressemitteilung

ALMA erkundet das Hubble Ultra Deep Field

Tiefste je durchgeführte Durchmusterung des frühen Universums

22. September 2016

Bevor das Hubble Ultra Deep Field (HUDF) im Jahr 2004 wegen seines Galaxienreichtums weltberühmt wurde, schien diese dunkle Ecke des Universums auf den ersten Blick eher unauffällig zu sein. Nun hat ein internationales Astronomenteam mit dem Atacama Large Millimeter/submillimeter Array (ALMA) diese Region im Mikrowellenbereich noch genauer unter die Lupe genommen als jede andere Beobachtungskampagne zuvor. Die Forscher, unter ihnen auch Wissenschaftler aus Heidelberg, Bonn und Garching, konnten zeigen, dass die Sternentstehungsrate in jungen Galaxien eng mit der Gesamtmasse der Sterne zusammenhängt. Sie fanden außerdem heraus, wie viel Rohmaterial für die Sternentstehung vor etwa 10 Milliarden Jahren, zur Blütezeit der Galaxienentstehung, im Kosmos zur Verfügung stand.

Die neuen ALMA-Ergebnisse werden in einer Reihe von Fachartikeln in den Zeitschriften Astrophysical Journal und Monthly Notices of the Royal Astronomical Society erscheinen, sowie bei einer Konferenz in Palm Springs in Kalifornien in den USA anlässlich des fünfjährigen Jubiläums des ALMA-Radioteleskops vorgestellt.

2004 wurden die Aufnahmen des Hubble Ultra Deep Field veröffentlicht — eine der ersten Beobachtungen des Hubble-Weltraumteleskops von NASA/ESA mit extrem langer Gesamtbelichtungszeit. Nie zuvor wurde so tief ins Universum geblickt und diese beeindruckenden Bilder lieferten eine Menagerie an Galaxien, von denen die ältesten weniger als eine Milliarde Jahre nach dem Urknall entstanden waren. Die Himmelsregion wurde nicht nur mehrmals von Hubble, sondern auch von vielen anderen Teleskopen beobachtet, wodurch die bis heute tiefsten Aufnahmen des Universums entstanden sind.

Astronomen haben nun anhand von hochempfindlichen Aufnahmen von ALMA dieses scheinbar unauffällige, aber gut untersuchte Fenster ins tiefe Universum zum ersten Mal im Millimeter-Wellenlängenbereich [1] inspiziert. Dadurch war es ihnen möglich, das lichtschwache Leuchten von Gaswolken sowie die Emission von warmem Staub in Galaxien im frühen Universum zu beobachten.

Bis jetzt hat ALMA das HUDF für insgesamt knapp 50 Stunden beobachtet. Hierbei handelt es sich um die bisher längste Beobachtungszeit von ALMA eines einzigen Bereichs des Himmels.

Ein Team unter Leitung von Jim Dunlop von der University of Edinburgh in Großbritannien gewann mit ALMA das erste tiefe, gleichmäßig belichtete ALMA-Bild einer Region, die so groß ist wie das HUDF. Die Daten ermöglichten ihnen, die Galaxien, die sie entdeckten, mit den Objekten abzugleichen, die bereits von Hubble und anderen Teleskopen beobachtet wurden.

Diese Studie hat gezeigt, dass sich die stellare Masse einer Galaxie am besten für die Vorhersage der Sternentstehungsrate im frühen, und damit hochrotverschobenen Universum eignet. Alle nachgewiesenen Galaxien weisen eine große Masse auf [2].

Jim Dunlop fasst als Erstautor des Artikels über das sogenannte Deep Imaging die Bedeutung seiner Studie zusammen: „Dieses Ergebnis ist ein Durchbruch. Zum ersten Mal verknüpfen wir Aufnahmen des fernen Universums aus Hubble-Beobachtungen im sichtbaren und ultravioletten Licht mit ALMA-Aufnahmen im ferninfraroten Millimeter-Bereich.

Das zweite Team unter der Leitung von Manuel Aravena vom Núcleo de Astronomía, Universidad Diego Portales in Santiago in Chile und Fabian Walter  vom Max-Planck-Institut für Astronomie in Heidelberg führte eine tiefere Suche über eine Fläche von etwa einem Sechstel der gesamten Fläche des HUDF durch [3].

Wir haben die erste komplett blinde, dreidimensionale Suche nach kaltem Gas im frühen Universum durchgeführt“, erläutert Chris Carilli, Astronom am National Radio Astronomy Observatory (NRAO) in Socorro in New Mexico in den USA und Mitglied des Forscherteams. „Dadurch haben wir eine Population von Galaxien entdeckt, die in anderen tiefen Durchmusterungen des Himmels nicht so einfach zu identifizieren ist.“ [4]

Einige der neuen ALMA-Beobachtungen dienten ausschließlich dem Zweck, Galaxien zu entdecken, die reich an Kohlenstoffmonoxid sind, was auf Regionen hindeutet, die für Sternentstehung bestens geeignet sind. Obwohl dieser molekulare Gasvorrat die Sternentstehungsaktivität in Galaxien verursacht, sind die Regionen mit Hubble oft nur schwer zu beobachten. ALMA kann daher weitere wichtige Puzzlestücke für das Rätsel der Entstehung und Entwicklung von Galaxien in unserem Universum liefern.

Unsere neuen ALMA-Ergebnisse bestätigen es: Je weiter wir in die Vergangenheit zurückblicken, umso mehr Gas finden wir in den Galaxien, die wir sehen“, fügt Manuel Aravena, Ko-Leiter des Astronomenteams, hinzu. „Diese Zunahme an Gasgehalt dürfte der Grund für die beachtliche Zunahme der Sternentstehungsraten sein, die während des Höhepunkts der Galaxienentstehung vor rund 10 Milliarden Jahre einsetzte.

Die heute vorgestellten Ergebnisse sind erst der Anfang einer Reihe von zukünftigen Beobachtungen mit ALMA zur Erforschung des fernen Universums. Beispielsweise soll eine 150-Stunden-Beobachtungskampagne des HUDF die Geschichte des Sternentstehungspotentials des Universums aufklären.

Die genauen Hintergründe der Geschichte der kosmischen Sternentstehung müssen wir erst noch verstehen. Unser jetzt bewilligtes ALMA Large Program wird die fehlenden Informationen über das Rohmaterial der Sternentstehung für Galaxien im berühmten Hubble Ultra Deep Field liefern“, ergänzt Fabian Walter.

Endnoten

[1] Die Astronomen wählten bewusst für das HUDF, einer Region im lichtschwachen südlichen Sternbild Chemischer Ofen (lat. Fornax), bewusst eine Himmelsregion, die bodengebundene Teleskope auf der Südhalbkugel der Erde wie ALMA mit dem Ziel unser Wissen über das ferne Universum zu erweitern weiter untersuchen können.

Eines der primären wissenschaftlichen Ziele für ALMA ist es, das tiefe, aber im sichtbaren LIcht nicht beobachtbare Universum zu erforschen.

[2] In diesem Kontext bedeutet „große Masse” Galaxien mit stellaren Massen von mehr als 20 Milliarden mal der Masse der Sonne ( 2 × 1010 Sonnenmassen). Zum Vergleich: Die Milchstraße ist eine große Galaxie und hat eine Masse im Bereich von etwa 100 Milliarden Sonnenmassen.

[3] Diese Himmelsregion ist etwa 700 mal kleiner als die Fläche der Scheibe des Vollmondes, von der Erde aus betrachtet. Eine der überraschendsten Aspekte des HUDF war die enorme Zahl an Galaxien, die in solch einem kleinen Teil des Himmels gefunden wurde.

[4] ALMAs Fähigkeit einen komplett anderen Teil des elektromagnetischen Spektrums als Hubble zu beobachten, ermöglicht es Astronomen, eine andere Klasse an astronomischen Objekten zu untersuchen, wie eine massereiche Sternentstehungswolke oder Objekte, die ansonsten zu lichtschwach wären, um sie im sichtbaren Licht zu beobachten, bei Wellenlängen im Millimeterbereich aber beobachtbar sind.

Die Suche wird als „blind” bezeichnet, da sie sich nicht auf ein bestimmtes Objekt konzentriert hat.

Die neuen ALMA-Beobachtungen des HUDF beinhalten zwei unterschiedliche, aber sich gegenseitig ergänzende Datentypen: Kontinuums-Beobachtungen, die Staubemission und Sternentstehung zu Tage bringen, und Aufnahmen der spektralen Emissionslinien, die sich auf kaltes molekulares Gas konzentrieren, das die Sternentstehung vorantreibt. Der zweite erfasste Datensatz ist besonders nützlich, da er Informationen darüber enthält, wie stark Licht von entfernten Objekten durch die Ausdehnung des Universums rotverschoben wurde. Höhere Rotverschiebung bedeutet, dass ein Objekt weiter weg ist und sein beobachtetes Licht einen Zustand widerspiegelt, der zeitlich weiter zurückliegt. Das ermöglicht es Astronomen, eine dreidimensionale Karte zu erstellen, wie sich das Gas, das für Sternentstehung notwendig ist, im Laufe der Zeit im Kosmos entwickelt hat.

Frühere Untersuchungen zur Verteilung des kühlen Gases im frühen Universum wurden mit dem Observatorium auf dem Plateau de Bure in den französischen Alpen und am Karl G. Jansky Very Large Array in den USA durchgeführt.

Weitere Informationen

Die hier vorgestellten Ergebnisse sind Inhalt der Fachartikel:

  1. “A deep ALMA image of the Hubble Ultra Deep Field”, von J. Dunlop et al., der demnächst in der Zeitschrift Monthly Notices of the Royal Astronomical Society erscheint.
  2. “The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for the [CII] Line and Dust Emission in 6 < z < 8 Galaxies”, von M. Aravena et al., der demnächst in der Zeitschrift Astrophysical Journal erscheint.
  3. 3. “The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-Redshift Galaxies”, von R. Decarli et al., der demnächst in der Zeitschrift Astrophysical Journal erscheint.
  4. “The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas”, von R. Decarli et al., der demnächst in der Zeitschrift Astrophysical Journal erscheint.
  5. “The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Continuum Number Counts, Resolved 1.2-mm Extragalactic Background, and Properties of the Faintest Dusty Star Forming Galaxies”, von M. Aravena et al., der demnächst in der Zeitschrift Astrophysical Journal erscheint.
  6. “The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description”, von F. Walter et al., der demnächst in der Zeitschrift Astrophysical Journal erscheint.
  7. “The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: the Infrared excess of UV-selected z= 2-10 Galaxies as a Function of UV-continuum Slope and Stellar Mass”, von R. Bouwens et al., der demnächst in der Zeitschrift Astrophysical Journal erscheint.
  8. “The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Implication for spectral line intensity mapping at millimeter wavelengths and CMB spectral distortions”, von C. L. Carilli et al., der demnächst in der Zeitschrift Astrophysical Journal erscheint.

Die beteiligten Wissenschaftler sind:

M. Aravena (Núcleo de Astronomía, Universidad Diego Portales, Santiago, Chile), R. Decarli (Max-Planck Institut für Astronomie, Heidelberg), F. Walter (Max-Planck-Institut für Astronomie, Heidelberg; Astronomy Department, California Institute of Technology, USA; NRAO, Pete V. Domenici Array Science Center, USA), R. Bouwens (Leiden Observatory, Leiden, Niederlande; UCO/Lick Observatory, Santa Cruz, USA), P.A. Oesch (Astronomy Department, Yale University, New Haven, USA), C.L. Carilli (Leiden Observatory, Leiden, Niederlande; Astrophysics Group, Cavendish Laboratory, Cambridge, Großbritannien), F.E. Bauer (Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute of Astrophysics, Chile; Space Science Institute, Boulder, USA), E. Da Cunha (Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australien; Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Australien), E. Daddi (Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Orme des Merisiers, Frankreich), J. Gónzalez-López (Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile), R.J. Ivison (European Southern Observatory, Garching bei München; Institute for Astronomy, University of Edinburgh, Edinburgh, Großbritannien), D.A. Riechers (Cornell University, 220 Space Sciences Building, Ithaca, USA), I. Smail (Institute for Computational Cosmology, Durham University, Durham, Großbritannien), A.M. Swinbank (Institute for Computational Cosmology, Durham University, Durham, Großbritannien), A. Weiss (Max-Planck-Institut für Radioastronomie, Bonn), T. Anguita (Departamento de Ciencias Físicas, Universidad Andrés Bello, Santiago, Chile; Millennium Institute of Astrophysics, Chile), R. Bacon (Université Lyon 1, Saint Genis Laval, Frankreich), E. Bell (Department of Astronomy, University of Michigan, USA), F. Bertoldi (Argelander Institute for Astronomy, Universität Bonn, Bonn), P. Cortes (Joint ALMA Observatory - ESO, Santiago, Chile; NRAO, Pete V. Domenici Array Science Center, USA), P. Cox (Joint ALMA Observatory - ESO, Santiago, Chile), J. Hodge (Leiden Observatory, Leiden, Niederlande), E. Ibar (Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaiso, Chile), H. Inami (Université Lyon 1, Saint Genis Laval, Frankreich), L. Infante (Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile), A. Karim (Argelander Institute for Astronomy, Universität Bonn, Bonn), B. Magnelli (Argelander Institute for Astronomy, Universität Bonn, Bonn), K. Ota (Kavli Institute for Cosmology, University of Cambridge, Cambridge, Großbritannien; Cavendish Laboratory, University of Cambridge, Großbritannien), G. Popping (European Southern Observatory, Garching bei München), P. van der Werf (Leiden Observatory, Leiden, Niederlande), J. Wagg (SKA Organization, Cheshire, Großbritannien), Y. Fudamoto (ESO, Garching bei München; Universität-Sternwarte München, München), D. Elbaz (Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Frankreich), S. Chapman (Dalhousie University, Halifax, Nova Scotia, Kanada), L.Colina (ASTRO-UAM, UAM, Unidad Asociada CSIC, Spanien), H.W. Rix (Max-Planck Institut für Astronomie, Heidelberg), Mark Sargent (Astronomy Centre, University of Sussex, Brighton, UK) und Arjen van der Wel (Max-Planck-Institut für Astronomie, Heidelberg)

K. Sheth (NASA Headquarters, Washington DC, USA), Roberto Neri (IRAM, Saint-Martin d’Hères, Frankreich), O. Le Fèvre (Aix Marseille Université, Laboratoire d’Astrophysique de Marseille, Marseille, Frankreich), M. Dickinson (Steward Observatory, University of Arizona, USA), R. Assef (Núcleo de Astronomía, Universidad Diego Portales, Santiago, Chile), I. Labbé (Leiden Observatory, Leiden University, Niederlande), S. Wilkins (Astronomy Centre, University of Sussex, Brighton, Großbritannien), J.S. Dunlop (University of Edinburgh, Royal Observatory, Edinburgh, Großbritannien), R.J. McLure (University of Edinburgh, Royal Observatory, Edinburgh, Großbritannien), A.D. Biggs (ESO, Garching), J.E. Geach (University of Hertfordshire, Hatfield, Großbritannien), M.J. Michałowski (University of Edinburgh, Royal Observatory, Edinburgh, Großbritannien), W. Rujopakarn (Chulalongkorn University, Bangkok, Thailand), E. van Kampen (ESO, Garching), A. Kirkpatrick (University of Massachusetts, Amherst, Massachusetts, USA), A. Pope (University of Massachusetts, Amherst, Massachusetts, USA), D. Scott (University of British Columbia, Vancouver, British Columbia, Canada), T.A. Targett (Sonoma State University, Rohnert Park, California, USA), I. Aretxaga (Instituto Nacional de Astrofísica, Optica y Electronica, Mexico), J.E. Austermann (NIST Quantum Devices Group, Boulder, Colorado, USA), P.N. Best (University of Edinburgh, Royal Observatory, Edinburgh, United Kingdom), V.A. Bruce (University of Edinburgh, Royal Observatory, Edinburgh, United Kingdom), E.L. Chapin (Herzberg Astronomy and Astrophysics, National Research Council Canada, Victoria, Canada), S. Charlot (Sorbonne Universités, UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, Paris, Frankreich), M. Cirasuolo (ESO, Garching), K.E.K. Coppin (University of Hertfordshire, College Lane, Hatfield, Großbritannien), R.S. Ellis (ESO, Garching), S.L. Finkelstein (The University of Texas at Austin, Austin, Texas, USA), C.C. Hayward (California Institute of Technology, Pasadena, California, USA), D.H. Hughes (Instituto Nacional de Astrofísica, Optica y Electronica, Mexiko), S. Khochfar (University of Edinburgh, Royal Observatory, Edinburgh, Großbritannien), M.P. Koprowski (University of Hertfordshire, College Lane, Hatfield, Großbritannien), D. Narayanan (Haverford College, Haverford, Pennsylvania, USA), C. Papovich (Texas A & M University, College Station, Texas, USA), J.A. Peacock (University of Edinburgh, Royal Observatory, Edinburgh, Großbritannien), B. Robertson (University of California, Santa Cruz, Santa Cruz, Kalifornien, USA), T. Vernstrom (Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, Kanada), G.W. Wilson (University of Massachusetts, Amherst, Massachusetts, USA) und M. Yun (University of Massachusetts, Amherst, Massachusetts, USA).

Das Atacama Large Millimeter/submillimeter Array (ALMA) ist eine internationale astronomische Einrichtung, die gemeinsam von Europa, Nordamerika und Ostasien in Zusammenarbeit mit der Republik Chile getragen wird. Von europäischer Seite aus wird ALMA über die Europäische Südsternwarte (ESO) finanziert, in Nordamerika von der National Science Foundation (NSF) der USA in Zusammenarbeit mit dem kanadischen National Research Council (NRC) und dem taiwanesischen National Science Council (NSC), und in Ostasien von den japanischen National Institutes of Natural Sciences (NINS) in Kooperation mit der Academia Sinica (AS) in Taiwan. Bei Entwicklung, Aufbau und Betrieb ist die ESO federführend für den europäischen Beitrag, das National Radio Astronomy Observatory (NRAO), das seinerseits von Associated Universities, Inc. (AUI) betrieben wird, für den nordamerikanischen Beitrag und das National Astronomical Observatory of Japan (NAOJ) für den ostasiatischen Beitrag. Dem Joint ALMA Observatory (JAO) obliegt die übergreifende Projektleitung für den Aufbau, die Inbetriebnahme und den Beobachtungsbetrieb von ALMA.

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

James Dunlop
University of Edinburgh
Edinburgh, United Kingdom
E-Mail: jsd@roe.ac.uk

Fabian Walter
Max-Planck Institut für Astronomie
Heidelberg, Germany
E-Mail: walter@mpia.de

Manuel Aravena
Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales
Santiago, Chile
E-Mail: manuel.aravenaa@mail.udp.cl

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Joerg Gasser (Pressekontakt Schweiz)
ESO Science Outreach Network
E-Mail: eson-switzerland@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1633.

Bilder

ALMA erforscht das Hubble Ultra Deep Field
ALMA erforscht das Hubble Ultra Deep Field
ALMA erforscht das Hubble Ultra Deep Field
ALMA erforscht das Hubble Ultra Deep Field
Das Hubble eXtreme Deep Field
Das Hubble eXtreme Deep Field
Tiefe ALMA-Aufnahme eines Bereichs des Hubble Ultra Deep Field
Tiefe ALMA-Aufnahme eines Bereichs des Hubble Ultra Deep Field
Tiefe ALMA-Aufnahme eines Bereichs des Hubble Ultra Deep Field
Tiefe ALMA-Aufnahme eines Bereichs des Hubble Ultra Deep Field

Videos

ALMA erforscht das Hubble Ultra Deep Field
ALMA erforscht das Hubble Ultra Deep Field

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.