Pressemitteilung
Rätsel um die Entstehung von Magnetaren gelöst?
14. Mai 2014
Magnetare sind bizarre, unglaublich dichte Überreste einer Supernovaexplosion. Sie sind die stärksten bekannten magnetischen Objekte des Universums - millionenmal stärker als die kraftvollsten Magneten auf der Erde. Ein Team europäischer Astronomen glaubt nun mit dem Very Large Telescope (VLT) der ESO zum ersten Mal den Begleitstern eines Magnetars gefunden zu haben. Diese Entdeckung hilft bei der Erklärung wie sich Magnetare bilden - ein Rätsel, das seit 35 Jahren ungelöst ist - und warum dieser spezielle Stern nicht zu einem Schwarzen Loch kollabiert ist, wie es Astronomen erwarten würden.
Wenn ein massereicher Stern durch die Wirkung seiner eigenen Schwerkraft in einer Supernovaexplosion kollabiert, wird er entweder zu einem Neutronenstern oder einem Schwarzen Loch. Magnetare sind eine ungewöhnliche und sehr exotische Form von Neutronensternen. Wie jedes dieser seltsamen Objekte sind sie winzig und außergewöhnlich dicht - ein Teelöffel voll Materie aus einem Neutronenstern hätte eine Masse von ungefähr einer Milliarde Tonnen. Außerdem besitzen sie extrem starke Magnetfelder. Die Oberflächen von Magnetaren senden große Mengen an Gammastrahlung aus, wenn sie eine Phase plötzlicher Neuausrichtung durchlaufen. Dieser als Sternenbeben bekannte Prozess ist die Folge enormer Spannungen, denen die Krusten der Magnetare unterliegen.
Der Sternhaufen Westerlund 1 [1], der sich 16.000 Lichtjahre entfernt im Südsternbild Ara (der Altar) befindet, beherbergt einen der zwei Dutzend in der Milchstraße bekannten Magnetare. Er wird CXOU J164710.2-45516 genannt und hat Astronomen große Rätsel aufgegeben.
„In unserer früheren Arbeit (eso1034) haben wir gezeigt, dass der Magnetar im Sternhaufen Westerlund 1 (eso0510) im explosiven Tod eines Sternes mit der 40-fachen Masse der Sonne entstanden sein muss. Aber damit tat sich ein ganz eigenes Problem auf, da man von Sternen dieser Masse erwarten würde, dass sie zu Schwarzen Löchern und nicht zu Neutronensternen werden, wenn sie kollabieren. Wir konnten nicht verstehen, wie aus ihm ein Magnetar werden konnte“, berichtet Simon Clark, Erstautor des Fachartikels, in dem die neuen Ergebnisse präsentiert werden.
Die Astronomen haben nun eine Lösung für dieses Rätsel vorgeschlagen. Sie nehmen an, dass der Magnetar durch die Wechselwirkung zweier massereicher Sterne entstanden ist, die sich in einem Doppelsternsystem umkreisen, das so kompakt ist, dass es in die Umlaufbahn der Erde um die Sonne passen würde. Bis jetzt wurde jedoch kein Begleitstern in der Nähe des Magnetars in Westerlund 1 gefunden, weshalb die Astronomen das VLT nutzten, um nach ihm in anderen Teilen des Sternhaufens zu suchen. Sie hatten es auf flüchtende Sterne abgesehen - Objekte, die mit hoher Geschwindigkeit den Sternhaufen verlassen - die vielleicht durch die Supernovaexplosion, durch die der Magnetar entstand, aus ihrer Umlaufbahn geschleudert wurden. Ein Stern mit der Bezeichnung Westerlund 1-5 [2] wurde gefunden, der genau das tut.
„Dieser Stern besitzt nicht nur die hohe Geschwindigkeit, die durch den Rückstoß einer Supernovaexplosion zu erwarten wäre, sondern auch eine Kombination aus geringer Masse, hoher Leuchtkraft und einer kohlenstoffreichen Zusammensetzung, die für einen einzelnen Stern unmöglich erscheint. Das ist ein schlagender Beweis, der zeigt, dass dieser Stern ursprünglich zusammen mit einem Begleitstern entstanden sein muss“, ergänzt Ben Ritchie von der Open Univerity, Koautor des neuen Fachartikels.
Diese Entdeckung erlaubte es den Astronomen, die Lebensgeschichte des Sterns zu rekonstruieren, die die Entstehung des Magnetars anstelle des zu erwartenden schwarzen Lochs ermöglichte. Im ersten Teil dieses Prozesses geht in dem massereicheren Stern des Paares der Brennstoff zur Neige. Er überträgt seine äußeren Schichten auf den masseärmeren Begleitstern, der dazu bestimmt ist ein Magnetar zu werden und der daraufhin beginnt immer schneller zu rotieren. Diese schnelle Rotation scheint die essentielle Zutat für die Entstehung des extrem starken Magnetfeldes eines Magnetars zu sein.
Im nächsten Schritt wird der Begleitstern als Konsequenz dieses Massentransfers selbst so schwer, dass er seinerseits eine große Menge der kürzlich gewonnen Masse abstößt. Ein Großteil dieser Matere geht verloren, aber etwas davon wird wieder auf den ursprünglichen Stern übertragen, den wir heute noch als Westerlund 1-5 leuchten sehen.
„Es ist dieser Austauschprozess von Materie, der Westerlund 1-5 seine einzigartige chemische Signatur verliehen hat und die Masse seines Begleitsterns soweit schrumpfen lies, dass sich ein Magnetar anstelle eines schwarzen Lochs bildete. Ein stellares Materieballspiel mit kosmischen Konsequenzen!“, schließt Gruppenmitglied Francisco Najarro vom Centro de Astrobiologia in Spanien.
Es scheint, dass Teil eines Doppelsternsystems zu sein eine fundamentale Zutat des Rezepts für die Entstehung eines Magnetars ist. Die schnelle Rotation, die durch den Massentransfer zwischen den zwei Sternen entsteht, scheint notwendig zu sein um die extrem starken auftretenden Magnetfelder zu erzeugen. Ein weiterer Massentransfer erlaubt es dem zukünftigen Magnetar, ausreichend leicht zu werden, um zum Zeitpunkt seines Todes nicht zu einem schwarzen Loch zu kollabieren.
Endnoten
[1] Der offene Sternhaufen Westerlund 1 wurde 1961 in Australien von dem schwedischen Astronomen Bengt Westerlund entdeckt, der später von dort aus zum Direktor der ESO in Chile (1970-74) berufen wurde. Dieser Sternhaufen liegt hinter einer riesigen interstellaren Gas- und Staubwolke, die das meiste sichtbare Licht absorbiert. Der Abschwächungsfaktor ist höher als 100.000, weshalb es sehr lange gedauert hat, die wahre Natur dieses speziellen Sternhaufens zu enthüllen.
Westerlund 1 ist ein einzigartiges natürliches Labor für die Erforschung extremer Stellarphysik, das Astronomen dabei hilft herauszufinden, wie die massereichsten Sterne der Milchstraße leben und sterben. Aus ihren Beobachtungen schließen die Astronomen, dass dieser außerordentliche Sternhaufen höchstwahrscheinlich nicht weniger als das 100.000-fache der Sonnenmasse besitzt, wobei sich all seine Sterne in ein Gebiet mit dem Durchmesser von 6 Lichtjahren befinden. Westerlund 1 scheint deshalb der massereichste und gleichzeitig kompakteste junge Sternhaufen zu sein, der bis jetzt in der Milchstraße entdeckt wurde.
Alle Sterne in Westerlund 1, die bislang analysiert wurden, haben Massen von mindestens dem 30- bis 40-fachen der Masse der Sonne. Weil solche Sterne in astronomischen Maßstäben eine vergleichsweise kurze Lebensdauer haben, muss Westerlund 1 sehr jung sein. Astronomen haben sein Alter zu 3,5 bis 5 Millionen Jahren bestimmt. Also ist Westerlund 1 eindeutig ein neu entstandener Sternhaufen in unserer Galaxie.
[2] Die vollständige Bezeichnung dieses Sterns lautet CI* Westerlund 1 W 5.
[3] Während Sterne altern, ändern die Kernreaktionen in ihrem Inneren ihre chemische Zusammensetzung. Die Elemente, die die Reaktionen befeuern, gehen zur Neige und die Reaktionsprodukte reichern sich an. Dieser stellare chemische Fingerabdruck ist zunächst reich an Wasserstoff und Stickstoff, aber arm an Kohlenstoff. Erst sehr spät im Leben der Sterne steigt der Kohlenstoffgehalt, zu einem Zeitpunkt, an dem Wasserstoff und Stickstoff bereits drastisch reduziert auftreten. Man nimmt an, dass es unmöglich für einen Einzelstern ist, gleichzeitig reich an Wasserstoff, Stickstoff und Kohlenstoff zu sein, wie es bei Westerlund 1-5 der Fall ist.
Weitere Informationen
Die in dieser ESO-Pressemitteilung vorgestellten Forschungsergebnisse erscheinen in Kürze unter dem Titel „A VLT/FLAMES survey for massive binaries in Westerlund 1: IV.Wd1-5 binary product and a pre-supernova companion for the magnetar CXOU J1647-45” von J. S. Clark et al. in der Fachzeitschrift Astronomy and Astrophysics. Dieselbe Forschungsgruppe veröffentlichte eine erste Untersuchung dieses Objektes im Jahr 2006 („A Neutron Star with a Massive Progenitor in Westerlund 1” von M. P. Muno et al., Astrophysical Journal, 636, L41).
Die beteiligten Wissenschaftler sind Simon Clark und Ben Ritchie (The Open University, Großbritannien), Francisco Najarro (Centro de Astrobiología, Spanien), Norbert Langer (Universität Bonn und Universität Utrecht, Niederlande) und Ignacio Negueruela (Universidad de Alicante, Spanien).
Die Astronomen verwendeten das FLAMES-Instrument des Very Large Telescope der ESO am Paranal Observatorium in Chile, um die Sterne von Westerlund 1 zu untersuchen.
Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner bei den neuartigen Teleskopverbund ALMA, dem größten astronomischen Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop mit 39 Metern Durchmesser für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird: das European Extremely Large Telescope (E-ELT).
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.
Links
Kontaktinformationen
Simon Clark
The Open University
Milton Keynes, United Kingdom
Tel: +44 207 679 4372
E-Mail: jsc@star.ucl.ac.uk
Richard Hook
ESO, La Silla, Paranal and E-ELT Press Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org
Joerg Gasser (Pressekontakt Schweiz)
ESO Science Outreach Network
E-Mail: eson-switzerland@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1415de-ch |
Name: | CXOU J164710.2-455216 |
Typ: | Local Universe : Star : Evolutionary Stage : Neutron Star : Magnetar |
Facility: | Very Large Telescope |
Instruments: | FLAMES |
Science data: | 2014A&A...565A..90C |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.