Nota de prensa

Un nuevo exoplaneta recién descubierto podría ser el mejor candidato para la búsqueda de señales de vida

Hallada por el método de tránsito una supertierra rocosa en la zona habitable de una tranquila estrella enana roja

19 de Abril de 2017

Un exoplaneta que orbita alrededor de una estrella enana roja, a 40 años luz de la Tierra, podría hacerse con el título de "mejor lugar para buscar signos de vida más allá del Sistema Solar". Utilizando el instrumento HARPS, de ESO, instalado en La Silla, junto con otros telescopios del mundo, un equipo internacional de astrónomos ha descubierto una “supertierra” en la zona habitable de la débil estrella LHS 1140. Este mundo es un poco más grande y más masivo que la Tierra y es probable que haya conservado la mayor parte de su atmósfera. Esto, junto con el hecho de que su órbita pasa por delante de su estrella, lo convierte en uno de los futuros objetivos más interesantes para desarrollar estudios atmosféricos. Los resultados aparecen en la edición del 20 de abril de 2017 de la revista Nature.

La supertierra recién descubierta, denominada LHS 1140b, orbita en la zona habitable de una débil estrella enana roja llamada LHS 1140, en la constelación de Cetus (el monstruo marino) [1]. Las enanas rojas son mucho más pequeñas y más frías que el Sol y, aunque LHS 1140b está diez veces más cerca de su estrella que la Tierra del Sol, sólo recibe alrededor de la mitad de luz de su estrella que la Tierra y se encuentra en medio de la zona habitable. Desde la Tierra, la órbita se ve casi de canto y, cuando el exoplaneta pasa delante de su estrella en cada órbita, bloquea un poco de su luz cada 25 días.

"Es el exoplaneta más interesante que he visto en la última década", afirma el autor principal, Jason Dittmann, del Centro de Astrofísica  Harvard-Smithsonian (Cambridge, EE.UU.). "Es el objetivo perfecto para llevar a cabo una de las misiones más grandes de la ciencia: buscar evidencias de vida más allá de la Tierra".

Las condiciones actuales de la enana roja son particularmente favorables, ya que LHS 1140 gira más lentamente y emite menos radiación de alta energía que otras estrellas de baja masa similares [2]. Para la vida tal y como la conocemos, un planeta debe tener agua líquida en su superficie y retener una atmósfera. En este caso, el gran tamaño del planeta implica que, hace millones de años, podría haber existido un océano de magma en su superficie. Este océano hirviente de lava podría haber proporcionado vapor a la atmósfera mucho después de que la estrella se hubiese calmado, alcanzando su brillo actual y constante, reponiendo así el agua que podría haberse perdido por la acción de la estrella en su fase más activa.

Inicialmente, el descubrimiento se hizo con la instalación MEarth, que detectó los primeros indicios: cambios característicos en la luz que se dan cuando el exoplaneta pasa delante de la estrella. Posteriormente, se hizo un seguimiento crucial con el instrumento HARPS de ESO (High Accuracy Radial velocity Planet Searcher, buscador de planetas de alta precisión por el método de velocidad radial), confirmando la presencia de la supertierra. HARPS también ayudó a establecer el periodo orbital y permitió deducir la masa y la densidad del exoplaneta [3].

Los astrónomos estiman que el planeta tiene al menos 5.000 millones de años. También deducen que tiene un diámetro 1,4 veces más grande que el de la Tierra (casi 18.000 kilómetros). Pero con una masa unas siete veces mayor que la de la Tierra y, por lo tanto, una densidad mucho más alta, esto implica que, probablemente, el exoplaneta está hecho de roca con un núcleo denso de hierro.

Esta supertierra puede ser el mejor candidato hasta el momento para futuras observaciones cuyo objetivo sea estudiar y caracterizar, en caso de tenerla, la atmósfera del exoplaneta. Dos de los miembros europeos del equipo, Xavier Delfosse y Xavier Bonfils, ambos del CNRS y el IPAG, en Grenoble (Francia), concluyen: "Para la futura caracterización de planetas en la zona habitable, el sistema LHS 1140 podría ser un objetivo aún más importante que Proxima b o TRAPPIST-1. ¡Este ha sido un año extraordinario para el descubrimiento de exoplanetas!". [4,5].

En concreto, con las observaciones que se llevarán a cabo próximamente con el Telescopio Espacial Hubble de la NASA/ESA, se podrá determinar exactamente cuánta radiación de alta energía cae sobre LHS 1140b, por lo que se podrá delimitar su capacidad para albergar vida.

En el futuro, cuando entren en funcionando nuevos telescopios como el ELT (Extremely Large Telescope) de ESO, es probable que seamos capaces de hacer observaciones detalladas de las atmósferas de exoplanetas y LHS 1140b es un candidato excepcional para este tipo de estudios.

Notas

[1] La zona habitable se define por el rango de órbitas alrededor de una estrella en el que un planeta posee la temperatura adecuada para que haya agua líquida en su superficie.

[2] Aunque el planeta se encuentra en la zona en la que, potencialmente, podría existir vida tal y como la conocemos, probablemente no entró en esta región hasta unos 40 millones de años después de la formación de la estrella enana roja. Durante esta fase, el exoplaneta podría haberse visto sometido al pasado activo y volátil de su estrella anfitriona. Una joven enana roja puede expulsar fácilmente el agua de la atmósfera de un planeta en formación que se encuentre cerca, desencadenando un efecto invernadero similar al de Venus.

[3] Este esfuerzo permitió que MEarth detectara otros eventos de tránsito, por lo que los astrónomos pudieron determinar sin lugar a dudas la detección del exoplaneta.

[4] El planeta alrededor de Proxima b (eso1629) está mucho más cerca de la Tierra, pero probablemente no pasa delante de su estrella, por lo que es muy difícil determinar si tiene atmósfera.

[5] A diferencia del sistema de TRAPPIST-1 (eso1706), no se han encontrado más exoplanetas alrededor de LHS 1140. Se cree que los sistemas planetarios múltiples son comunes alrededor de enanas rojas, así que es posible que haya más exoplanetas que hayan pasado desapercibidos hasta ahora porque son demasiado pequeños.

Información adicional

Este trabajo de investigación se presenta en el artículo científico titulado “A temperate rocky super-Earth transiting a nearby cool star”, por J. A. Dittmann et al., y aparece en la revista Nature del 20 de abril de 2017.

El equipo está formado por Jason A. Dittmann (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); Jonathan M. Irwin (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); David Charbonneau (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); Xavier Bonfils (Instituto de Planetología y Astrofísica de Grenoble – Universidad de Grenoble-Alpes/CNRS, Francia); Nicola Astudillo-Defru (Observatorio de Ginebra, Suiza); Raphaëlle D. Haywood (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); Zachory K. Berta-Thompson (Universidad de Colorado, EE.UU.); Elisabeth R. Newton (MIT, EE.UU.); Joseph E. Rodriguez (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); Jennifer G. Winters (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); Thiam-Guan Tan (Telescopio Perth para el Sondeo de Exoplanetas, Australia); José-Manuel Almenara (Instituto de Planetología y Astrofísica de Grenoble – Universidad de Grenoble-Alpes/CNRS, Francia; Observatorio de Ginebra, Suiza); François Bouchy (Universidad Aix Marsella, Francia); Xavier Delfosse (Instituto de Planetología y Astrofísica de Grenoble – Universidad de Grenoble-Alpes/CNRS, Francia); Thierry Forveille (Instituto de Planetología y Astrofísica de Grenoble – Universidad de Grenoble-Alpes/CNRS, Francia); Christophe Lovis (Observatorio de Ginebra, Suiza); Felipe Murgas (Instituto de Planetología y Astrofísica de Grenoble – Universidad de Grenoble-Alpes/CNRS, Francia; Instituto de Astrofísica de Canarias, España); Francesco Pepe (Observatorio de Ginebra, Suiza); Nuno C. Santos (Instituto de Astrofísica y Ciencias del Espacio y Universidad de Oporto, Portugal); Stephane Udry (Observatorio de Ginebra, Suiza); Anaël Wünsche (CNRS/IPAG, Francia); Gilbert A. Esquerdo (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); David W. Latham (Centro de Astrofísica  Harvard-Smithsonian, EE.UU.); y Courtney D. Dressing (Caltech, EE.UU.).

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el E-ELT (European Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El
nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Jason Dittmann
Harvard-Smithsonian Center for Astrophysics
Cambridge, USA
Correo electrónico: jdittmann@cfa.harvard.edu

Nicola Astudillo-Defru
Geneva Observatory - Université of Geneva
Geneva, Switzerland
Correo electrónico: nicola.astudillo@unige.ch

Xavier Bonfils
Institut de Planétologie et d'Astrophysique de Grenoble – Université Grenoble-Alpes/CNRS
Grenoble, France
Correo electrónico: xavier.bonfils@univ-grenoble-alpes.fr

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6655
Móvil: +49 151 1537 3591
Correo electrónico: rhook@eso.org

Megan Watzke
Harvard-Smithsonian Center for Astrophysics
Cambridge, USA
Teléfono: +1 617-496-7998
Correo electrónico: mwatzke@cfa.harvard.edu

José Miguel Mas Hesse (Contacto para medios de comunicación en España)
Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Teléfono: +34 918131196
Correo electrónico: eson-spain@eso.org

Connect with ESO on social media

Esta es una traducción de la nota de prensa de ESO eso1712.

Acerca de la nota de prensa

Nota de prensa No.:eso1712es
Nombre:LHS 1140b
Tipo:Milky Way : Star : Circumstellar Material : Planetary System
Facility:ESO 3.6-metre telescope
Instruments:HARPS
Science data:2017Natur.544..333D

Imágenes

Ilustración del exoplaneta tipo supertierra LHS 1140b
Ilustración del exoplaneta tipo supertierra LHS 1140b
Ubicación de la débil estrella roja LHS 1140 en la constelación de Cetus (el monstruo marino)
Ubicación de la débil estrella roja LHS 1140 en la constelación de Cetus (el monstruo marino)
Ilustración del nuevo exoplaneta rocoso LHS 1140b
Ilustración del nuevo exoplaneta rocoso LHS 1140b

Videos

Ilustración de un viaje al exoplaneta tipo supertierra LHS 1140b
Ilustración de un viaje al exoplaneta tipo supertierra LHS 1140b