Nota de Imprensa
O que Torna Activo um Buraco Negro de Massa Extremamente Elevada?
13 de Julho de 2011
Um novo estudo, que combina dados do Very Large Telescope do ESO e do observatório espacial de raios X XMM-Newton da ESA, revelou algo surpreendente. A maior parte dos buracos negros gigantes que se encontram no centro das galáxias desde os últimos 11 mil milhões de anos não se tornaram activos devido a fusões de galáxias, como se pensava até agora.
No coração da maior parte, se não mesmo todas, as galáxias enormes existe um buraco negro de massa extremamente elevada, com uma massa de milhões de vezes, ou até mil milhões de vezes, a massa do Sol. Em muitas galáxias, incluindo a nossa própria Via Láctea, o buraco negro central não se encontra em actividade. Mas em algumas galáxias, particularmente no início da história do Universo [1], o monstro central alimenta-se de material que emite imensa radiação à medida que cai no buraco negro.
Um dos mistérios por resolver prende-se com o facto de sabermos donde virá o material que activa um buraco negro adormecido originando violentas explosões no centro da galáxia, tornando-o assim num núcleo activo de galáxia. Até agora, os astrónomos pensavam que a maioria destes núcleos activos se “acendiam” quando se dava a fusão de duas galáxias ou quando duas galáxias passavam muito perto uma da outra e o material perturbado se tornava o combustível do buraco negro central. No entanto, novos resultados indicam que esta ideia pode estar errada no caso de muitas galáxias activas.
Viola Allevato (Max-Planck-Institut für Plasmaphysik; Excellence Cluster Universe, Garching, Alemanha) e uma equipa internacional de cientistas da colaboração COSMOS [2] observaram detalhadamente mais de 600 galáxias activas numa região do céu extensivamente estudada, o chamado campo COSMOS [3]. Tal como se esperava, os astrónomos descobriram que os núcleos activos extremamente brilhantes são raros, enquanto que a maior parte das galáxias activas nos 11 mil milhões de anos anteriores são apenas moderadamente brilhantes. No entanto, os cientistas tiveram uma enorme surpresa: os novos dados mostram que a maioria das galáxias activas mais comuns, as menos brilhantes, não se tornaram activas devido à fusão de galáxias [4]. Os resultados serão publicados na revista científica da especialidade Astrophysical Journal.
A presença de núcleos activos de galáxias revela-se através dos raios X emitidos pela região que circunda o buraco negro. O observatório espacial XMM-Newton da ESA observou esta radiação e as galáxias foram subsequentemente observadas pelo Very Large Telescope do ESO, que mediu as distâncias a estes objectos [5]. Quando se combinam os dois tipos de observações é possível fazer um mapa tridimensional que nos mostra onde se encontram as galáxias activas.
“Demorámos mais de cinco anos, mas conseguimos obter um dos maiores e mais completos catálogos de galáxias activas no céu de raios X,” diz Marcella Brusa, uma das autoras do estudo.
Os astrónomos utilizaram este novo mapa para determinar a distribuição das galáxias activas e compararam estes resultados às predições feitas pela teoria. Determinaram também como é que esta distribuição varia à medida que o Universo envelhece - desde há aproximadamente 11 mil milhões de anos até aos nosso dias.
A equipa descobriu que os núcleos activos são encontrados maioritariamente em galáxias de massa muito elevada, que contêm muita matéria escura [6]. Este facto revelou-se surpreendente e nada consistente com as previsões feitas pela teoria - se a maior parte dos núcleos activos fossem uma consequência de fusões e colisões entre galáxias seria de esperar que fossem encontrados em galáxias com massa moderada (cerca de um bilião de vezes a massa do Sol). A equipa descobriu que a maior parte dos núcleos activos se encontra em galáxias com massas cerca de 20 vezes maiores do que o valor previsto pela teoria da fusão.
“Estes novos resultados abrem-nos uma nova janela sobre como é que os buracos negros de massa extremamente elevada iniciam as suas “refeições”,” diz Viola Allevato, autora principal do artigo que descreve este trabalho. “Estes resultados indicam-nos que os buracos negros são normalmente alimentados por processos gerados no interior da própria galáxia, tais como instabilidades do disco e formação estelar violenta, em oposição a colisões de galáxias.”
Alexis Finoguenov, que supervisou o trabalho, conclui: “Mesmo no passado distante, até cerca de 11 mil milhões de anos atrás, as colisões de galáxias apenas justificam uma pequena percentagem das galáxias activas moderadamente brilhantes. Nessa altura as galáxias estavam todas mais próximas umas das outras e portanto era de esperar que a fusão fosse mais frequente do que no passado mais recente. Por isso mesmo os novos resultados são ainda mais surpreendentes.”
Notas
[1] As galáxias activas mais brilhantes eram mais comuns no Universo cerca de três a quatro mil milhões de anos depois do Big Bang, enquanto que os objectos menos brilhantes aparecem mais tarde, cerca de oito mil milhões de anos depois do Big Bang.
[2] O novo estudo é baseado em dois grandes programas astronómicos europeus: o rastreio XMM-Newton do campo COSMOS liderado pelo Professor Günther Hasinger e o zCOSMOS do ESO liderado pelo Professor Simon Lilly. Estes programas fazem parte da iniciativa COSMOS, um esforço internacional para observar uma zona do céu utilizando o Telescópio Espacial Hubble da NASA/ESA, o XMM-Newton da ESA e o Chandra da NASA, ambos telescópios espaciais de raios X, o telescópio espacial de infravermelho Spitzer da NASA, em adição ao Very Large Telescope do ESO e a outros telescópios terrestres.
[3] O campo COSMOS é uma área com cerca de dez vezes o tamanho da Lua Cheia, na constelação do Sextante. Foi mapeada por uma série de telescópios a diferentes comprimentos de onda, de modo a que muitos de estudos e investigações possam beneficiar desta imensidão de dados.
[4] Um trabalho do Telescópio Espacial Hubble da NASA/ESA publicado o ano passado (heic1101) mostrou que não existia uma ligação importante entre núcleos activos em galáxias e fusões de galáxias, numa amostra de galáxias relativamente próximas. Esse estudo olhava para trás no tempo cerca de oito mil milhões de anos. No entanto, este novo estudo faz recuar esta conclusão para um limite temporal de mais de três mil milhões de anos no passado, para uma altura em que as galáxias se encontravam ainda mais próximas umas das outras.
[5] A equipa utilizou um espectrógrafo montado no VLT para separar a radiação ténue emitida pelas galáxias nas suas diversas componentes. Uma análise cuidada permitiu seguidamente determinar o desvio para o vermelho: quanto é que a radiação foi esticada pela expansão do Universo desde que foi emitida pelas galáxias e portanto a que distância é que estas se encontram. Uma vez que a luz viaja a uma velocidade finita podemos também saber quão distantes no tempo estamos a ver estes objetos longínquos.
[6] A matéria escura é uma substância misteriosa que forma uma componente invisível na maior parte, senão mesmo todas, as galáxias (activas ou não) - incluindo a nossa própria Via Láctea. Os autores estimaram a quantidade de matéria escura em cada galáxia - valor que indica a sua massa total - a partir da distribuição de galáxias no novo estudo.
Informações adicionais
Este trabalho foi descrito num artigo científico que será publicado em Julho de 2011 na revista da especialidade Astrophysical Journal.
A equipa é composta por V. Allevato (Max-Planck-Institut für Plasmaphysik [IPP]; Excellence Cluster Universe, Garching, Alemanha), A. Finoguenov (Max-Planck-Institut für Extraterrestrische Physik [MPE], Garching, Alemanha e University of Maryland, Baltimore, USA), N. Cappelluti (INAF-Osservatorio Astronomico de Bologna [INAF-OA], Itália e University of Maryland, Baltimore, USA), T.Miyaji (Universidad Nacional Autonoma de Mexico, Ensenada, Mexico e University of California at San Diego, USA), G. Hasinger (IPP), M. Salvato (IPP, Excellence Cluster Universe, Garching, Alemanha), M. Brusa (MPE), R. Gilli (INAF-OA), G. Zamorani (INAF-OA), F. Shankar (Max-Planck-Institut für Astrophysik, Garching, Alemanha), J. B. James (University of California at Berkeley, USA e Univerdade de Copenhaga, Dinamarca), H. J. McCracken (Observatoire de Paris, França), A. Bongiorno (MPE), A. Merloni (Excellence Cluster Universe, Garching, Alemanha e MPE), J. A. Peacock (University of California at Berkeley, USA), J. Silverman (Universidade de Tóquio, Japão) e A. Comastri (INAF-OA).
O ESO, o Observatório Europeu do Sul, é a mais importante organização europeia intergovernamental para a investigação em astronomia e é o observatório astronómico mais produtivo do mundo. O ESO é financiado por 15 países: Alemanha, Áustria, Bélgica, Brasil, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Portugal, Reino Unido, República Checa, Suécia e Suíça. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e funcionamento de observatórios astronómicos terrestres de ponta, que possibilitam aos astrónomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronómica. O ESO mantém em funcionamento três observatórios de ponta, no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera o Very Large Telescope, o observatório astronómico óptico mais avançado do mundo e dois telescópios de rastreio. O VISTA, o maior telescópio de rastreio do mundo que trabalha no infravermelho e o VLT Survey Telescope, o maior telescópio concebido exclusivamente para mapear os céus no visível. O ESO é o parceiro europeu do revolucionário telescópio ALMA, o maior projeto astronómico que existe atualmente. O ESO encontra-se a planear o European Extremely Large Telescope, E-ELT, um telescópio de 42 metros que observará na banda do visível e próximo infravermelho. O E-ELT será “o maior olho no céu do mundo”.
Links
- Artigo científico
- Fotografias do VLT
- Nota de Imprensa do Hubble (heic1101)
- Zoom na direção do campo COSMOS
Contactos
Dr Alexis Finoguenov
Max-Planck-Institut für extraterrestrische Physik
Garching, Germany
Tel: +49 89 30000 3644
Email: alexis@mpe.mpg.de
Viola Allevato
Max-Planck-Institut für Plasmaphysik; Excellence Cluster Universe
Garching, Germany
Tel: +49 89 3299 1558
Email: viola.allevato@ipp.mpg.de
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Email: rhook@eso.org
Margarida Serote (Contacto de imprensa em Portugal)
Rede de Divulgação Científica do ESO
e Instituto de Astrofísica e Ciências do Espaço,
Tel: +351 964951692
Email: eson-portugal@eso.org
Sobre a Nota de Imprensa
Nº da Notícia: | eso1124pt |
Nome: | Active Galactic Nuclei |
Tipo: | Early Universe : Galaxy : Activity : AGN |
Facility: | Very Large Telescope, XMM-Newton |
Instrumentos: | VIMOS |
Science data: | 2011ApJ...736...99A |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.