Press Release
Comet Halley Passes the Halfway Mark
Very Distant Image Obtained with the ESO NTT
18 February 1994
Eight years after the passage of Comet Halley in early 1986, astronomers at the European Southern Observatory have succeeded in obtaining an image [1] of this famous object at a distance of no less than 2,820 million km from the Sun. The comet is now about as far away as giant planet Uranus. It recently passed the halfway mark towards the most distant point of its very elongated 76-year orbit. The image shows the 6 x 15 km avocado-shaped nucleus as an extremely faint point of light without any surrounding dust cloud. It appears that the surface is now completely frozen and the comet has ceased to emit dust and gas. This observation was made with the ESO 3.58 metre New Technology Telescope (NTT). It is by far the faintest and most distant image ever recorded of this comet.
A DIFFICULT OBSERVATION
The new Halley image was obtained in the course of an observational programme by a small group of astronomers [2], aimed at the investigation of distant solar system objects. The observation was difficult to perform and is close to the limit of what is possible, even with the NTT, one of the technologically most advanced astronomical telescopes.
In fact, this observation may be compared to viewing a black golfball, used during a late evening game, from a distance of 12,000 km.
At Halley's present, very large distance from the Sun, the intensity of the solar light is over 350 times fainter than here on Earth. The surface of the cometary nucleus is very dark; it reflects only 4 % of the infalling sunlight. The amount of light received from Halley is therefore extremely small: the recorded star-like image of the nucleus is about 160 million times fainter than the faintest star that can be seen with the unaided eye. A long exposure was needed to catch enough light to show the object; even with the very sensitive SuSI CCD camera at the NTT, the shutter had to be kept open for a total of 3 hours 45 minutes. During this time, of the order of 9000 photons from Comet Halley were registered. The extreme faintness of its image is illustrated by the fact that almost 1 million, or 100 times as many photons were simultaneously received in this direction from the luminous atmosphere of the Earth. They must be carefully "subtracted", before the comet can be seen.
There is another complication. Due to the motions of the comet and the Earth, the direction to the comet (as seen against the stars in the background) continuously changes during the observation. The movement of the telescope must therefore be accurately offset to "follow" the motion of the comet in order to keep the sparse photons falling on the same spot of the detector during the long exposure.
IS HALLEY NOW FROZEN?
The measured brightness of the Halley image (visual magnitude 26.5 +- 0.2) closely corresponds to what would be expected, if it results from sunlight being reflected from the nucleus alone. This indicates that there is little, if any, dust left around the nucleus and it must be assumed that its surface layers are now completely frozen.
The observation therefore shows that nothing is left of the great mass of dusty material, estimated at 1 million tonnes, that was thrown out during the completely unexpected outburst observed at ESO in February 1991. Nevertheless, the astronomers intend to continue to monitor the behaviour of Halley during the next years - it cannot be excluded that this comet may be good for another surprise!
FUTURE OBSERVATIONS WITH THE VLT
Comet Halley will continue to move outwards through the solar system at decreasing speed. Thirty years from now it reaches the turning point (the "aphelion") of its elongated orbit, almost 5,300 million kilometres from the Sun. Although the light reflected from its nucleus will then be 15 times fainter than at the present time, it should still be possible to register its image with one of the 8.2 metre unit telescopes of the ESO Very Large Telescope (VLT) during exposures of only a few hours' duration.
Comet Halley's next return to our neighbourhood will take place in the year 2061.
- A B/W photo accompanies this Press Release.
- The members are Olivier Hainaut and Richard West (ESO), Brian Marsden (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, U.S.A.) and Karen Meech (Institute for Astronomy, Honolulu, Hawaii, U.S.A.). The Halley observation is also described on a Circular of the International Astronomical
Union, published today. - See eso9103.
About the Release
Release No.: | eso9404 |
Legacy ID: | PR 04/94 |
Name: | Comet Halley |
Type: | Solar System Solar System : Interplanetary Body : Comet |
Facility: | New Technology Telescope |
Instruments: | SUSI |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.