Press Release
The Nature of the Mysterious “Luminous Arc” Revealed: A Gravitational Einstein Ring
5 November 1987
The prototype of a new class of astrophysical phenomena has now been interpreted. Studies of other objects of the same type will open entirely new vistas in the exploration of the nature of distant galaxies.
The combination of a very dark sky at the ESO La Silla observatory, the large collecting area of the 3.6 m telescope and the high efficiency of the ESO Faint Object Spectrograph (EFOSC) has made it possible to obtain for the first time a convincing spectrum that reveals the true nature of a mysterious object, the prototype “Giant Luminous Arc" in the distant cluster of galaxies Abell 370.
Several atomic spectral lines have been unambiguously identified in the arc by a group of astronomers from the Toulouse Observatory, France. They were able to show that the object is a “gravitational ring", a phenomenon predicted by Einstein, but never observed before. It is caused by the deflection of light from a background galaxy by the dense core of the cluster Abell 370. This exciting discovery opens an entirely new field of observational astronomy.
The giant arc was first recognized by the French group in September 1985, on direct images of Abell 370, obtained with the French-Canadian 3.6 m telescope on Mauna Kea, Hawaii [1]. The distance to this cluster of galaxies is about 4600 million light years (the redshift is z = 0.374) and the apparent size of the visible segment of the arc is at least 500 000 light years.
After the subsequent discovery of another arc in the cluster of galaxies Cl2244-02 by American astronomers later in 1986, several theories were advanced about their nature. One possibility was that the two arcs were the results of gravitational lensing by the dense cluster of galaxies (see also eso8712). According to Einstein's Theory of Relativity, light rays can be bent by a gravitational field. An observer may then see multiple images or even an arc, depending on the relative positions of the foreground mass and the background object.
A determination of the true nature of the arcs had to await observations of their spectra, a task that had been viewed as almost impossible because of their faintness. However, for the first time, the French team has now been able to obtain spectra of the various segments of the giant arc in Abell 370. This shows that the spectrum is the same in different parts of the arc and also that it is the spectrum of a distant galaxy. Thus the arc is indeed a “gravitational ring".
The observations were made with the EFOSC/PUMA2 spectrograph at the Cassegrain focus of the ESO 3.6 m telescope, on October 18 - 22, 1987. Several 90 minutes exposures were made through a long and a curved slit, centered on the arc. In total, 6 hours of integration time was needed to bring out the rather noisy spectrum, attached to this Press Release. The spectrum shows several identifiable lines, including a comparably strong emission line from ionized oxygen, all shifted towards the red part of the spectrum. The measured redshift is 0.724 and the overall intensity profile of the spectrum is that of a galaxy at this redshift. This corresponds to a distance of about 7500 million light years; that is almost twice as distant as the galaxies in Abell 370.
The light of the distant galaxy is obviously deflected by the central core of the cluster Abell 370. It is confirmed that the central part of the arc, as well as a feature at the eastern end, both belong to the gravitational ring.
The creation of such a ring demands a rather specific geometric relationship between the background galaxy and the cluster, as well as a specific mass distribution within the cluster, of which studies of the ring's geometry and brightness will give detailed information. This kind of research is useful for verification of our understanding of gravitational theory and galaxy mass distributions. Since in certain configurations the arc-shaped image may be amplified, it is conceivable that distant clusters of galaxies may be used as “gravitational telescopes" to search for very distant objects in the Universe.
With the EFOSC instrument at the ESO 3.6 m telescope, it is possible to search efficiently for other gravitational rings, by obtaining direct images of other distant clusters of galaxies. Due to the highly efficient instrumentation, each exposure can be made in a few minutes only and several hundreds of clusters may be surveyed during a few nights.
The French astronomers have also made EFOSC observations of the only other known arc in the cluster Cl2244-02, now in the process of being reduced.
This Press Release is accompanied by a graphic representation of the spectrum of the central part of the arc, as obtained with the EFOSC/PUMA2 instrument, attached to the ESO 3.6 m telescope. It shows the redshifted, strong emission line of singly ionized oxygen, as well as weaker absorption lines of hydrogen and ionized magnesium. The break at rest wavelength 4000 Å is near two strong absorption lines of single ionized calcium.
Notes
[1] A picture of the arc has been reproduced in June 1987 ( 48, page 44) issue of the ESO Messenger. It is also available from the ESO Information Service upon request.
More information
The complete discussion of the exciting observations of the two arcs will be published in the European journal Astronomy & Astrophysics.
G. Soucail, Y.Mellier, B. Fort, G.Mathez and M. Cailloux.
Contacts
Richard West
ESO
Garching, Germany
Tel: +49 89 3200 6276
Email: information@eso.org
About the Release
Release No.: | eso8716 |
Legacy ID: | PR 15/87 |
Name: | Abell 370 |
Type: | Local Universe : Galaxy : Grouping : Cluster |
Facility: | ESO 3.6-metre telescope |
Instruments: | EFOSC |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.