Press Release
Stars Too Old to be Trusted?
A possible Stellar Solution to the Cosmological Lithium Problem
10 August 2006
Analysing a set of stars in a globular cluster with ESO's Very Large Telescope, astronomers may have found the solution to a critical cosmological and stellar riddle. Until now, an embarrassing question was why the abundance of lithium produced in the Big Bang is a factor 2 to 3 times higher than the value measured in the atmospheres of old stars. The answer, the researchers say, lies in the fact that the abundances of elements measured in a star's atmosphere decrease with time.
"Such trends are predicted by models that take into account the diffusion of elements in a star", said Andreas Korn, lead-author of the paper reporting the results in this week's issue of the journal Nature [1] [2]. "But an observational confirmation was lacking. That is, until now."
Lithium is one of the very few elements to have been produced in the Big Bang. Once astronomers know the amount of ordinary matter present in the Universe [3], it is rather straightforward to derive how much lithium was created in the early Universe. Lithium can also be measured in the oldest, metal-poor stars, which formed from matter similar to the primordial material. But the cosmologically predicted value is too high to reconcile with the measurements made in the stars. Something is wrong, but what?
Diffusive processes altering the relative abundances of elements in stars are well known to play a role in certain classes of stars. Under the force of gravity, heavy elements will tend to sink out of visibility into the star over the course of billions of years.
"The effects of diffusion are expected to be more pronounced in old, very metal-poor stars", said Korn. "Given their greater age, diffusion has had more time to produce sizeable effects than in younger stars like the Sun."
The astronomers thus set up an observational campaign to test these model predictions, studying a variety of stars in different stages of evolution in the metal-poor globular cluster NGC 6397. Globular clusters [4] are useful laboratories in this respect, as all the stars they contain have identical age and initial chemical composition. The diffusion effects are predicted to vary with evolutionary stage. Therefore, measured atmospheric abundance trends with evolutionary stage are a signature of diffusion.
Eighteen stars were observed for between 2 and 12 hours with the multi-object spectrograph FLAMES-UVES on ESO's Very Large Telescope. The FLAMES spectrograph is ideally suited as it allows astronomers to obtain spectra of many stars at a time. Even in a nearby globular cluster like NGC 6397, the unevolved stars are very faint and require rather long exposure times.
The observations clearly show systematic abundance trends along the evolutionary sequence of NGC 6397, as predicted by diffusion models with extra mixing. Thus, the abundances measured in the atmospheres of old stars are not, strictly speaking, representative of the gas the stars originally formed from.
"Once this effect is corrected for, the abundance of lithium measured in old, unevolved stars agrees with the cosmologically predicted value", said Korn. "The cosmological lithium discrepancy is thus largely removed."
"The ball is now in the camp of the theoreticians," he added. "They have to identify the physical mechanism that is at the origin of the extra mixing."
Notes
[1]: "A probable stellar solution to the cosmological lithium discrepancy", by A.J. Korn et al.
[2]: The team is composed of Andreas Korn, Paul Barklem, Remo Collet, Nikolai Piskunov, and Bengt Gustafsson (Uppsala University, Sweden), Frank Grundahl (University of Aarhus, Denmark), Olivier Richard (Université Montpellier II, France), and Lyudmila Mashonkina (Russian Academy of Science, Russia).
[3]: High-precision measurements of the matter content of the Universe were made in recent years by studying the cosmic microwave background.
[4]: Globular clusters are large aggregates of stars; over 100 are known in our galaxy, the Milky Way. The largest contain millions of stars. They are some of the oldest objects observed in the Universe and were presumably formed at about the same time as the Milky Way Galaxy, a few hundred million years after the Big Bang.
Contacts
Andreas Korn
Uppsala University
Uppsala, Sweden
Tel: +46 18 471 5994
Email: akorn@astro.uu.se
About the Release
Release No.: | eso0630 |
Legacy ID: | PR 30/06 |
Name: | NGC 6397 |
Type: | Milky Way : Star : Grouping : Cluster : Globular |
Facility: | Very Large Telescope |
Instruments: | UVES |
Science data: | 2006Natur.442..657K |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.