Communiqué de presse
Première détection d’un élément lourd né de la collision entre étoiles à neutrons
Du strontium nouvellement créé, un élément chimique utilisé dans les feux d’artifices, a pour la première fois été détecté dans l’espace par un télescope de l’ESO
23 octobre 2019
Du strontium a pour la toute première fois été détecté dans l’espace. La création de cet élément lourd fait suite à la fusion de deux étoiles à neutrons. Cette découverte a été effectuée par le spectrographe X-shooter qui équipe le Very Large Telescope de l’ESO. Elle fait l’objet d’une publication ce jour au sein de la revue Nature. Cette détection confirme la possibilité que les éléments les plus lourds de l’Univers se forment lors de la fusion d’étoiles à neutrons, complétant ainsi le puzzle de la formation des éléments chimiques.
En 2017, suite à la détection d’ondes gravitationnelles traversant la Terre, l’ESO a pointé ses télescopes chiliens, au premier rang desquels le VLT, en direction de l’événement source : une fusion d’étoiles à neutrons baptisée GW170817. D’après les astronomes, si les collisions d’étoiles à neutrons s’accompagnaient de la formation d’éléments plus lourds, les signatures de ces éléments pourraient être détectées au sein des kilonovae, ou vestiges explosifs de ces fusions. C’est précisément ce que vient de réaliser une équipe de chercheurs européens, au moyen de données acquises par l’instrument X-shooter installé sur le VLT de l’ESO.
Suite à l’événement GW170817, la flotte de télescopes de l’ESO a effectué le suivi de l’explosion de la kilonova sur une gamme étendue de longueurs d’onde. L’instrument X-shooter a notamment acquis une série de spectres s’étendant de l’ultraviolet à l’infrarouge. Une première analyse de ces spectres suggéra la présence d’éléments lourds au sein de la kilonova. Toutefois, les astronomes demeuraient incapables alors de les différencier les uns des autres.
“Une nouvelle analyse des données acquises en 2017 lors de la fusion a récemment permis d’identifier la signature de l’un des éléments lourds composant cette boule de feu, démontrant par là-même que la collision des étoiles à neutrons s’accompagne de la création de cet élément dans l’Univers” précise Darach Watson de l’Université de Copenhague au Danemark, auteur principal de cette étude. Sur Terre, le strontium est naturellement présent dans le sol, et se trouve concentré dans certains minéraux. Ses sels sont utilisés pour conférer aux feux d’artifices une couleur rouge vif.
Les astronomes connaissent, depuis les années 1950, les processus physiques donnant lieu à la création des éléments chimiques. Au fil des décennies suivantes, ils ont découvert les sites cosmiques de chacune de ces forges nucléaires, à l’exception d’une. “Cette découverte sonne la fin de notre quête de l’origine des éléments chimiques” ajoute Darach Watson. “Nous savons désormais que les processus conduisant à la formation des éléments chimiques se produisent pour la plupart au sein des étoiles ordinaires, lors des explosions de supernovae, ou dans les enveloppes externes des vieilles étoiles. Jusqu’à présent toutefois, nous ignorions la localisation du processus ultime – la capture rapide de neutrons, responsable de la création des éléments les plus lourds du tableau périodique.”
Lors du processus de capture rapide de neutrons, un noyau atomique capture des neutrons suffisamment rapidement pour permettre la création d’éléments très lourds. La plupart des éléments chimiques sont produits au cœur des étoiles. La formation d’éléments plus lourds que le fer, tel le strontium, requiert toutefois des environnements portés à des températures bien plus élevées et composés de nombreux neutrons libres. La capture rapide de neutrons ne se produit naturellement que dans des environnements extrêmes, au sein desquels les atomes sont bombardés par un nombre élevé de neutrons.
“Pour la toute première fois, nous sommes en mesure d’établir un lien direct entre la création d’un nouvel élément par capture de neutrons et la fusion d’étoiles à neutrons, confirmant par là-même que les étoiles à neutrons sont composées de neutrons, et associant le processus de capture rapide de neutrons à ces fusions”, précise Camilla Juul Hansen de l’Institut Max Planck dédié à l’Astronomie, Heidelberg, dont la contribution à cette étude s’avéra essentielle.
Les scientifiques commencent à peine à mieux comprendre les fusions d’étoiles à neutrons et les kilonovae. En raison de leur connaissance limitée de ces nouveaux phénomènes et d’autres interrogations soulevées par les spectres acquis par l’instrument X-shooter lors de l’explosion, les astronomes n’étaient pas en mesure d’identifier les éléments chimiques individuels jusqu’à présent.
“En fait, nous avons pensé que nous pourrions détecter le strontium peu après la survenue de l’événement. Toutefois, traduire cette idée en démonstration s’avéra particulièrement compliqué. Cette difficulté résultait de notre méconnaissance de l’apparence spectrale des éléments les plus lourds du tableau périodique”, explique Jonatan Selsing de l’Université de Copenhague, l’un des auteurs principaux de l’article.
L’événement baptisé GW170817 a donné lieu à la cinquième détection d’ondes gravitationnelles au moyen de l’instrument LIGO (Laser Interferometer Gravitational-Wave Observatory) de la NSF aux Etats-Unis et de l’Interféromètre Virgo en Italie. Située dans la galaxie NGC 4993, la fusion fut la première, et à ce jour la seule source d’ondes gravitationnelles dont la contrepartie visible fit l’objet d’un suivi et d’une détection par des télescopes au sol.
Grâce aux efforts combinés de LIGO, de Virgo et du VLT, nous comprenons mieux que jamais le fonctionnement interne des étoiles à neutrons et leurs fusions explosives.
Plus d'informations
Ce travail de recherche fait l’objet d’un article à paraître au sein de l’édition du 24 octobre 2019 de la revue Nature.
L’équipe se compose de D. Watson (Institut Niels Bohr & Centre d’Etudes de l’Aube Cosmique, Université de Copenhague, Danemark), C. J. Hansen (Institut Max Planck dédié à l’Astronomie, Heidelberg, Allemagne), J. Selsing (Institut Niels Bohr & Centre d’Etudes de l’Aube Cosmique, Université de Copenhague, Danemark), A. Koch (Centre d’Astronomie de l’Université d’Heidelberg, Allemagne), D. B. Malesani (DTU Space, Institut Spatial National, Université Technique du Danemark, & Institut Niels Bohr & Centre d’Etudes de l’Aube Cosmique, Université de Copenhague, Danemark), A. C. Andersen (Institut Niels Bohr, Université de Copenhague, Danemark), J. P. U. Fynbo (Institut Niels Bohr & Centre d’Etudes de l’Aube Cosmique, Université de Copenhague, Danemark), A. Arcones (Institut de Physique Nucléaire, Université Technique de Darmstadt, Allemagne & GSI Centre de Recherche Helmholtz sur les ions lourds, Darmstadt, Allemagne), A. Bauswein (GSI Centre de Recherche Helmholtz sur les ions lourds, Darmstadt, Allemagne & Institut Heidelberg d’Etudes Théoriques, Allemagne), S. Covino (Observatoire Astronomique de Brera, INAF, Milan, Italie), A. Grado (Observatoire Astronomique de Capodimonte, INAF, Naples, Italie), K. E. Heintz (Centre d’Astrophysique et de Cosmologie, Institut des Sciences, Université d’Islande, Reykjavík, Islande & Institut Niels Bohr & Centre d’Etudes de l’Aube Cosmique, Université de Copenhague, Danemark), L. Hunt (Observatoire Astrophysique d’Arcetri, INAF, Florence, Italie), C. Kouveliotou (Université George Washington, Département de Physique, Washington DC, Etats-Unis & Institut des Sciences Astronomique, Physique et Statistique), G. Leloudas (DTU Space, Institut Spatial National, Université Technique du Danemark, & Institut Niels Bohr, Université de Copenhague, Danemark), A. Levan (Département de Physique, Université de Warwick, Royaume-Uni), P. Mazzali (Institut de Recherche Astrophysique, Université John Moores de Liverpool, Royaume-Uni & Institut Max Planck dédié à l’Astrophysique, Garching, Allemagne), E. Pian (Observatoire d’Astrophysique et des Sciences Spatiales de Bologne, INAF, Bologne, Italie).
L'ESO est la première organisation intergouvernementale pour l'astronomie en Europe et l'observatoire astronomique le plus productif au monde. L'ESO est soutenu par 16 pays : l'Allemagne, l'Autriche, la Belgique, le Danemark, l'Espagne, la Finlande, la France, l’Irlande, l'Italie, les Pays-Bas, la Pologne, le Portugal, la République Tchèque, le Royaume-Uni, la Suède et la Suisse. L'ESO conduit d'ambitieux programmes pour la conception, la construction et la gestion de puissants équipements pour l'astronomie au sol qui permettent aux astronomes de faire d'importantes découvertes scientifiques. L'ESO joue également un rôle de leader dans la promotion et l'organisation de la coopération dans le domaine de la recherche en astronomie. L'ESO gère trois sites d'observation uniques, de classe internationale, au Chili : La Silla, Paranal et Chajnantor. À Paranal, l'ESO exploite le VLT « Very Large Telescope », l'observatoire astronomique observant dans le visible le plus avancé au monde et deux télescopes dédiés aux grands sondages. VISTA fonctionne dans l'infrarouge. C'est le plus grand télescope pour les grands sondages. Et, le VLT Survey Telescope (VST) est l'un des plus grands télescopes conçus exclusivement pour sonder le ciel dans la lumière visible. L'ESO est le partenaire européen d'ALMA, un télescope astronomique révolutionnaire. ALMA est le plus grand projet astronomique en cours de réalisation. L'ESO est actuellement en train de programmer la réalisation d'un télescope géant (ELT pour Extremely Large Telescope) de la classe des 39 mètres qui observera dans le visible et le proche infrarouge. L'ELT sera « l'œil le plus grand au monde tourné vers le ciel ».
Liens
- Publication scientifique
- Les télescopes de l’ESO observent la première lumière d’une source d’ondes gravitationnelles
- Photos du VLT
Contacts
Darach Watson
Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Mobile: +45 24 80 38 25
Courriel: darach@nbi.ku.dk
Camilla J. Hansen
Max Planck Institute for Astronomy
Heidelberg, Germany
Tél: +49 6221 528-358
Courriel: hansen@mpia.de
Jonatan Selsing
Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Mobile: +45 61 71 43 46
Courriel: jselsing@nbi.ku.dk
Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tél: +49 89 3200 6670
Courriel: pio@eso.org
Thierry Botti (contact presse pour la France)
Réseau de diffusion scientifique de l'ESO
et Laboratoire d'Astrophysique de Marseille
Marseille, France
Tél: +33 4 95 04 41 06
Courriel: eson-france@eso.org
A propos du communiqué de presse
Communiqué de presse N°: | eso1917fr |
Nom: | GW170817 |
Type: | Early Universe : Star : Evolutionary Stage : Neutron Star |
Facility: | Very Large Telescope |
Instruments: | X-shooter |
Science data: | 2019Natur.574..497W |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.