Tisková zpráva
Kolem Barnardovy hvězdy obíhá super-Země
Kampaň Red Dots nalezla spolehlivé důkazy přítomnosti planety obíhající kolem Slunci blízké osamocené hvězdy
14. listopadu 2018
Kolem Barnardovy hvězdy – Slunci nejbližší osamocené stálice a jedné z nejbližších sousedních hvězd vůbec – obíhá planeta hmotností alespoň třikrát převyšující Zemi. Kamenné extrasolární planety této velikosti jsou označovány jako super-Země. Zmrzlý a málo osvětlený svět byl odhalen v rámci projektu Red Dots – jedné z nejrozsáhlejších pozorovacích kampaní současnosti, která využívá k pátrání po exoplanetách celou řadu teleskopů a přístrojů po celém světě, včetně spektrografu ESO/HARPS. Nově objevená planeta je druhou nejbližší známou extrasolární planetou a obíhá kolem hvězdy, která se po obloze pohybuje ze všech nejrychleji.
U Barnardovy hvězdy (Barnard’s Star) vzdálené asi 6 světelných let od Slunce se podařilo odhalit přítomnost planety. Tento mimořádně významný objev byl zveřejněn v článku publikovaném 15. listopadu 2018 ve vědeckém časopise Nature. Nalezení tohoto objektu je společným výsledkem kampaně Red Dots a projektu CARMENES, které se zaměřují na pátrání po blízkých kamenných exoplanetách a v nedávné minulosti rovněž nalezly planetu u Slunci nejbližší hvězdy Proxima Centauri (eso1629).
Planeta s provizorním označením Barnard's Star b je v současnosti druhou nejbližší známou exoplanetou [1]. Získaná data naznačují, že se jedná o objekt klasifikovaný jako super-Země (super-Earth) s hmotností alespoň 3,2krát převyšující hmotnost naší planety. Exoplaneta obíhá kolem své mateřské hvězdy zhruba jednou za 233 dní. Mateřská stálice, Barnardova hvězda, je červený trpaslík (red dwarf) – chladná hvězda nízké hmotnosti, která svou planetu ozařuje jen velmi slabě. Ve srovnání s množstvím energie, jaké dostává Země od Slunce, dopadají na povrch této planety jen asi 2 % energie.
Přestože planeta leží relativně blízko mateřské hvězdy – hvězdu a planetu dělí méně než poloviční vzdálenost než Slunce a Zemi (asi 0,4 a.u.), nachází se zároveň poblíž takzvané sněžné čáry (snow line) – na okraji oblasti, kde těkavé látky jako voda zamrzají do podoby ledu. Rovnovážná teplota (equilibrium temperature) na povrchu tohoto chladného a temného světa by se mohla pohybovat kolem -170 °C, planeta je tedy pro život, jaký známe, nehostinná.
Barnardova hvězda, Slunci nejbližší osamocená stálice, nese jméno astronoma E. E. Barnarda. Hvězda samotná je poměrně stará, možná dvakrát starší než Slunce, a málo aktivní. Je však stálicí s největším zdánlivým pohybem po obloze [2]. Super-Země jsou pravděpodobně nejčastějším typem planet vyskytujícím se u málo hmotných stálic, jakou je i Barnardova hvězda, což potvrzuje i tento nově nalezený objekt. Současné teorie formování planetárních systémů navíc předpovídají, že okolí sněžné čáry je ideálním místem pro vznik takových planet.
Pátrání po planetách kolem Barnardovy hvězdy přineslo v minulosti jen zklamání. Tento průlomový objev bylo možné učinit pouze díky kombinaci měření řady vysoce přesných přístrojů pracujících ve spojení s velkými dalekohledy po celém světě [3].
„Na základě velmi pečlivé analýzy jsme si na 99 % jisti, že tato planeta skutečně existuje,” prohlásil vedoucí vědeckého týmu Ignasi Ribas (Institute of Space Studies of Catalonia a Institute of Space Sciences, CSIC, Španělsko). „Budeme však pokračovat v našem pozorování tohoto slabého objektu, abychom vyloučili i málo pravděpodobné přirozené variace jasnosti mateřské hvězdy, které by se mohly projevovat podobně, jako tato planeta.“
Mezi přístroji, které vědci použili, byli i legendární lovci planet ESO – spektrografy HARPS a UVES. „HARPS je velmi důležitou součástí našeho projektu. Zkombinovali jsme archivní data několika týmů s novými navazujícími pozorováními Bartnardovy hvězdy z různých zařízení,“ vysvětluje Guillem Anglada Escudé (Queen Mary University, Londýn, VB), další z vedoucích vědeckých pracovníků týmu, který stojí za publikovanými výsledky [4]. „Kombinace různých přístrojů hrála klíčovou roli a umožnila nám detailně prověřit prezentované výsledky.“
Ke hledání kandidátů na extrasolární planety využívají astronomové Dopplerův jev (Doppler effect). Při oběhu planety kolem hvězdy dochází díky vzájemnému působení k pohybu hvězdy ve směru k nám a od nás. Když se hvězda pohybuje od Země, spektrum jejího záření vykazuje rudý posuv (redshift) – spektrální čáry se posunou směrem k červenému konci spektra. V případě pohybu k nám se posunem spektrálních čar ke kratším vlnovým délkám projevuje poduv modrý.
Astronomové využívají tohoto jevu k měření změn rychlosti pohybu hvězdy, které jsou způsobeny obíhající planetou. Spektrograf HARPS je schopen registrovat velmi malé změny rychlosti hvězdy až pod 1 m/s (asi 3,5 km/h, což je srovnatelné s rychlostí běžné chůze). Tento postup pátrání po extrasolárních planetách je známý jako metoda radiálních rychlostí (radial velocity method). Dosud nikdy však nebyl použit k detekci planety typu super-Země na takto vzdálené dráze (s tak dlouhou periodou oběhu).
„Využili jsme pozorování ze sedmi různých přístrojů získaná během dvaceti let, což je jeden z největších a nejobsáhlejších datových souborů, jaký byl kdy použit k přesnému studiu radiálních rychlostí,“ vysvětluje Ignasi Ribas. „Kombinací veškerých dat jsme získali celkem 771 měření, což je skutečně značné množství informací!“
„Na tomto objevu jsme všichni pracovali velmi usilovně,“ dodává Guillem Anglada Escudé. „Jedná se o výsledek rozsáhlé spolupráce, která byla organizována v rámci projektu Red Dots, a obsahuje příspěvky týmů z celého světa. Následná pozorování objevené planety v současnosti probíhají na řadě observatoří.“
Poznámky
[1] Slunci nejbližším systémem je trojhvězda Alpha Centauri, ke které patří i nejbližší hvězda Proxima. V roce 2016 astronomové pomocí přístrojů ESO a dalších zařízení nalezli důkazy, že kolem Proxima Centauri, v současnosti Slunci vůbec nejbližší hvězdy tohoto systému, obíhá planeta. Proxima se nachází jen o něco dále než 4 světelné roky od Slunce a planetu objevil tým Guillema Anglada Escudé (eso1629).
[2] Rychlost pohybu Barnardovy hvězdy (v prostoru vzhledem ke Slunci) dosahuje asi 500 000 km/h, přes tento úprk však není nejrychleji se pohybující známou hvězdou. Z pohledu pozorovatele na Zemi však není ani tak důležitá absolutní rychlost, jako zdánlivá rychlost pohybu po obloze. Barnardova hvězda se po obloze přesune o úhlový průměr Měsíce v úplňku asi za 180 let, i když to nevypadá jako mnoho, je hvězdou se zdaleka nejrychlejším zdánlivým pohybem.
[3] V rámci výzkumu byly využity tyto kombinace zařízení a dalekohledů: HARPS + ESO 3.6-metre telescope; UVES + ESO/VLT; HARPS-N + Telescopio Nazionale Galileo; HIRES + Keck 10-metre telescope; PFS + Carnegie’s Magellan 6.5-m telescope; APF + Lick Observatory 2.4-m telescope; a CARMENES (Calar Alto Observatory). Následná pozorování byla provedena pomocí dalekohledu o průměru 90 cm na Sierra Nevada Observatory, 40cm robotického dalekohledu SPACEOBS observatory a 80cm Joan Oró Telescope na Montsec Astronomical Observatory (OAdM).
[4] Příběh celého objevu si můžete přečíst na stránkách ESOBlog.
Další informace
Výzkum byl prezentován v článku „A super-Earth planet candidate orbiting at the snow-line of Barnard’s star“, který byl zveřejněn ve vědeckém časopise Nature 15. listopadu 2018.
Složení týmu: I. Ribas (Institut de Ciències de l’Espai, Španělsko & Institut d’Estudis Espacials de Catalunya, Španělsko), M. Tuomi (Centre for Astrophysics Research, University of Hertfordshire, UK), A. Reiners (Institut für Astrophysik Göttingen, Německo), R. P. Butler (Department of Terrestrial Magnetism, Carnegie Institution for Science, USA), J. C. Morales (Institut de Ciències de l’Espai, Španělsko & Institut d’Estudis Espacials de Catalunya, Španělsko), M. Perger (Institut de Ciències de l’Espai, Španělsko & Institut d’Estudis Espacials de Catalunya, Španělsko), S. Dreizler (Institut für Astrophysik Göttingen, Německo), C. Rodríguez-López (Instituto de Astrofísica de Andalucía, Španělsko), J. I. González Hernández (Instituto de Astrofísica de Canarias Španělsko & Universidad de La Laguna, Španělsko), A. Rosich (Institut de Ciències de l’Espai, Španělsko & Institut d’Estudis Espacials de Catalunya, Španělsko), F. Feng (Centre for Astrophysics Research, University of Hertfordshire, UK), T. Trifonov (Max-Planck-Institut für Astronomie, Německo), S. S. Vogt (Lick Observatory, University of California, USA), J. A. Caballero (Centro de Astrobiología, CSIC-INTA, Španělsko), A. Hatzes (Thüringer Landessternwarte, Německo), E. Herrero (Institut de Ciències de l’Espai, Španělsko & Institut d’Estudis Espacials de Catalunya, Španělsko), S. V. Jeffers (Institut für Astrophysik Göttingen, Německo), M. Lafarga (Institut de Ciències de l’Espai, Spain & Institut d’Estudis Espacials de Catalunya, Španělsko), F. Murgas (Instituto de Astrofísica de Canarias, Španělsko & Universidad de La Laguna, Španělsko), R. P. Nelson (School of Physics and Astronomy, Queen Mary University of London, UK), E. Rodríguez (Instituto de Astrofísica de Andalucía, Španělsko), J. B. P. Strachan (School of Physics and Astronomy, Queen Mary University of London, UK), L. Tal-Or (Institut für Astrophysik Göttingen, Německo & School of Geosciences, Tel-Aviv University, Israel), J. Teske (Department of Terrestrial Magnetism, Carnegie Institution for Science, USA & Hubble Fellow), B. Toledo-Padrón (Instituto de Astrofísica de Canarias, Spain & Universidad de La Laguna, Španělsko), M. Zechmeister (Institut für Astrophysik Göttingen, Německo), A. Quirrenbach (Landessternwarte, Universität Heidelberg, Německo), P. J. Amado (Instituto de Astrofísica de Andalucía, Španělsko), M. Azzaro (Centro Astronómico Hispano-Alemán, Španělsko), V. J. S. Béjar (Instituto de Astrofísica de Canarias, Spain & Universidad de La Laguna, Španělsko), J. R. Barnes (School of Physical Sciences, The Open University, UK), Z. M. Berdiñas (Departamento de Astronomía, Universidad de Chile), J. Burt (Kavli Institute, Massachusetts Institute of Technology, USA), G. Coleman (Physikalisches Institut, Universität Bern, Švýcarsko), M. Cortés-Contreras (Centro de Astrobiología, CSIC-INTA, Španělsko), J. Crane (The Observatories, Carnegie Institution for Science, USA), S. G. Engle (Department of Astrophysics & Planetary Science, Villanova University, USA), E. F. Guinan (Department of Astrophysics & Planetary Science, Villanova University, USA), C. A. Haswell (School of Physical Sciences, The Open University, UK), Th. Henning (Max-Planck-Institut für Astronomie, Německo), B. Holden (Lick Observatory, University of California, USA), J. Jenkins (Departamento de Astronomía, Universidad de Chile), H. R. A. Jones (Centre for Astrophysics Research, University of Hertfordshire, UK), A. Kaminski (Landessternwarte, Universität Heidelberg, Německo), M. Kiraga (Warsaw University Observatory, Polsko), M. Kürster (Max-Planck-Institut für Astronomie, Německo), M. H. Lee (Department of Earth Sciences and Department of Physics, The University of Hong Kong), M. J. López-González (Instituto de Astrofísica de Andalucía, Španělsko), D. Montes (Dep. de Física de la Tierra Astronomía y Astrofísica & Unidad de Física de Partículas y del Cosmos de la Universidad Complutense de Madrid, Španělsko), J. Morin (Laboratoire Univers et Particules de Montpellier, Université de Montpellier, Francie), A. Ofir (Department of Earth and Planetary Sciences, Weizmann Institute of Science, Izrael), E. Pallé (Instituto de Astrofísica de Canarias, Španělsko & Universidad de La Laguna, Španělsko), R. Rebolo (Instituto de Astrofísica de Canarias, Španělsko, & Consejo Superior de Investigaciones Científicas & Universidad de La Laguna, Španělsko), S. Reffert (Landessternwarte, Universität Heidelberg, Německo), A. Schweitzer (Hamburger Sternwarte, Universität Hamburg, Německo), W. Seifert (Landessternwarte, Universität Heidelberg, Německo), S. A. Shectman (The Observatories, Carnegie Institution for Science, USA), D. Staab (School of Physical Sciences, The Open University, UK), R. A. Street (Las Cumbres Observatory Global Telescope Network, USA), A. Suárez Mascareño (Observatoire Astronomique de l'Université de Genève, Švýcarsko & Instituto de Astrofísica de Canarias, Španělsko), Y. Tsapras (Zentrum für Astronomie der Universität Heidelberg, Německo), S. X. Wang (Department of Terrestrial Magnetism, Carnegie Institution for Science, USA), and G. Anglada-Escudé (School of Physics and Astronomy, Queen Mary University of London, UK & Instituto de Astrofísica de Andalucía, Španělsko).
ESO je nejvýznamnější mezivládní astronomická organizace v Evropě, která v současnosti provozuje nejproduktivnější pozemní astronomické observatoře světa. ESO má 16 členských států: Belgie, Česko, Dánsko, Finsko, Francie, Irsko, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko, Velká Británie a dvojici strategických partnerů – Chile, která hostí všechny observatoře ESO, a Austrálii. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a provoz výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také hraje vedoucí úlohu při podpoře a organizaci celosvětové spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal, nejvyspělejší astronomické observatoři světa pro viditelnou oblast, pracuje VLT (Velmi velký dalekohled) a dva přehlídkové teleskopy – VISTA a VST. Dalekohled VISTA pozoruje v infračervené části spektra a je největším přehlídkovým teleskopem světa, dalekohled VST je největším teleskopem navrženým k prohlídce oblohy ve viditelné oblasti spektra. ESO je významným partnerem zařízení APEX a revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Nedaleko Observatoře Paranal, na hoře Cerro Armazones, staví ESO nový dalekohled ELT (Extrémně velký dalekohled) s primárním zrcadlem o průměru 39 m, který se stane „největším okem lidstva hledícím do vesmíru“.
Odkazy
Kontakty
Ignasi Ribas (Lead Scientist)
Institut d’Estudis Espacials de Catalunya and the Institute of Space Sciences, CSIC
Barcelona, Spain
Tel.: +34 93 737 97 88 (ext 933027)
Email: iribas@ice.cat
Guillem Anglada-Escudé
Queen Mary University of London
London, United Kingdom
Tel.: +44 (0)20 7882 3002
Email: g.anglada@qmul.ac.uk
Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6670
Mobil: +49 151 1537 3591
Email: pio@eso.org
Anežka Srbljanović (press contact Česko)
ESO Science Outreach Network
a Astronomical Institute of Czech Academy of Sciences
Tel.: +420 323 620 116
Email: eson-czech@eso.org
O zprávě
Tiskové zpráva č.: | eso1837cs |
Jméno: | Barnard's Star b |
Typ: | Milky Way : Star : Circumstellar Material : Planetary System |
Facility: | Very Large Telescope |
Instruments: | HARPS |
Science data: | 2018Natur.563..365R |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.