Nota de prensa
¿Primeras señales en el espacio vacío de una extraña propiedad cuántica?
Observaciones de una estrella de neutrones, llevadas a cabo con el VLT, podrían confirmar una predicción de hace 80 años sobre el vacío
30 de Noviembre de 2016
Utilizando el VLT (Very Large Telescope) de ESO, un equipo de astrónomos, que ha estudiado la luz emitida por una estrella de neutrones extraordinariamente densa y fuertemente magnetizada, puede haber encontrado los primeros indicios observacionales de un extraño efecto cuántico predicho por primera vez en la década de 1930. La polarización de la luz observada sugiere que el espacio vacío que hay alrededor de la estrella de neutrones está sujeta a un efecto cuántico conocido como birrefringencia de vacío.
Un equipo dirigido por Roberto Mignani, de INAF Milán (Italia) y de la Universidad de Zielona Gora (Polonia), utilizó el VLT (Very Large Telescope) de ESO, instalado en el Observatorio Paranal (Chile), para observar la estrella de neutrones RX J1856.5-3754, a unos 400 años luz de la Tierra [1].
A pesar de estar entre las estrellas de neutrones más cercanas, su extrema oscuridad hizo que los astrónomos sólo pudieran observarla en luz visible utilizando el instrumento FORS2, instalado en el VLT, en los límites de la tecnología de telescopios actual.
Las estrellas de neutrones son los densos núcleos remanentes de estrellas masivas (al menos 10 veces más masivas que nuestro Sol) que han estallado como supernovas al final de sus vidas. También tienen campos magnéticos muy extremos, miles de millones de veces más fuertes que los del Sol, que impregnan su superficie exterior y sus alrededores.
Estos campos son tan fuertes que incluso afectan a las propiedades del espacio vacío que hay alrededor de la estrella. Se cree que, normalmente, el vacío está completamente vacío, y que la luz puede viajar a través de él sin sufrir ningún cambio. Pero en la electrodinámica cuántica (QED, por sus siglas en inglés), la teoría cuántica que describe la interacción entre fotones de luz y partículas cargadas, como electrones, el espacio está lleno de partículas virtuales que aparecen y desaparecen todo el tiempo. Los campos magnéticos muy fuertes puede modificar este espacio, lo que afecta a la polarización de la luz que pasa a través de él.
Mignani, explica: "De acuerdo con la QED, un vacío altamente magnetizado se comporta como un prisma lo hace con la propagación de la luz, un efecto conocido como birrefringencia de vacío".
Sin embargo, hasta ahora, de entre las muchas predicciones de la QED, la birrefringencia de vacío carecía de una demostración experimental directa. Los intentos de detectarla en el laboratorio no han tenido éxito en los años 80 desde que se predijo en un artículo por Werner Heisenberg (conocido por formular el principio de incertidumbre) y Hans Heinrich Euler.
"Este efecto puede detectarse solamente en presencia de campos magnéticos enormemente fuertes, como los que hay alrededor de estrellas de neutrones. Esto demuestra, una vez más, que las estrellas de neutrones son laboratorios de un gran valor para el estudio de las leyes fundamentales de la naturaleza", afirma Roberto Turolla (Universidad de Padua, Italia).
Tras un cuidadoso análisis de los datos del VLT, Mignani y su equipo detectaron polarización lineal (en un grado significativo de alrededor del 16%) debida probablemente, según los investigadores, al efecto impulsor de birrefringencia de vacío en el área de espacio vacío que rodea a RX J1856.5-3754 [2].
Vincenzo Testa (INAF, Roma, Italia), comenta: "Es el objeto más débil en el que se ha medido nunca la polarización. Requiere uno de los telescopios más grandes y más eficientes del mundo, el VLT, y técnicas precisas de análisis de datos para mejorar la señal de una estrella tan débil".
"La alta polarización lineal que medimos con el VLT no puede explicarse fácilmente con nuestros modelos, a menos que incluyamos los efectos de birrefringencia de vacío predichos por QED", agrega Mignani.
"Este estudio del VLT es el primer apoyo observacional para las predicciones de este tipo de efectos QED que emanan de un campo magnético extremadamente fuerte", comenta Silvia Zane (UCL/MSSL, Reino Unido).
Mignani está emocionado ante las mejoras en este área de estudio que podrían dares gracias a los telescopios más avanzados: "Las mediciones de la polarización con la próxima generación de telescopios como el E-ELT (European Extremely Large Telescope)de ESO, pueden jugar un papel crucial a la hora de poner a prueba las predicciones de los de efectos de birrefringencia de vacío de la QED alrededor muchas más estrellas de neutrones".
"Esta medición, realizada por primera vez ahora en luz visible, también allana el camino para que puedan llevarse a cabo mediciones similares en longitudes de onda de rayos X", añade Kinwah Wu (UCL/MSSL, Reino Unido).
Notas
[1] Este objeto forma parte del grupo de estrellas de neutrones conocidas como Las siete magníficas. Son estrellas de neutrones aisladas (INS, isolated neutron stars), que no tienen compañeras estelares, no emiten ondas de radio (como los púlsares) y no están rodeados por material de la supernova progenitora.
[2] Hay otros procesos que pueden polarizar la luz de las estrellas mientras viaja a través del espacio. El equipo revisó cuidadosamente otras posibilidades — por ejemplo, la polarización por dispersión provocada por granos de polvo—, pero parece poco probable que produzcan la señal de polarización observada.
Información adicional
Este trabajo de investigación se present en el artíuclo científico titulado “Evidence for vacuum birefringence from the first optical polarimetry measurement of the isolated neutron star RX J1856.5−3754”, por R. Mignani et al., que aparece en la revista Monthly Notices of the Royal Astronomical Society.
El equipo está formado por R.P. Mignani (INAF - Instituto de Astrofísica Espacial y Física Cósmica de Milán, Milán, Italia; Instituto Janusz Gil de Astronomía, Universidad de Zielona Góra, Zielona Góra, Polonia); V. Testa (INAF - Observatorio Astronómico de Roma, Monteporzio, Italia); D. González Caniulef (Laboratorio Mullard de Ciencias Espaciales, University College London, Reino Unido); R. Taverna (Departamento de Física y Astronomía, Universidad de Padua, Padua, Italia); R. Turolla (Departamento de Física y Astronomía, Universidad de Padua, Padua, Italia; Laboratorio Mullard de Ciencias Espaciales, University College London, Reino Unido); S. Zane (Laboratorio Mullard de Ciencias Espaciales, University College London, Reino Unido); y K. Wu (Laboratorio Mullard de Ciencias Espaciales, University College London, Reino Unido).
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el E-ELT (European Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.
Enlaces
Contactos
Roberto Mignani
INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica Milano
Milan, Italy
Teléfono: +39 02 23699 347
Celular: +39 328 9685465
Correo electrónico: mignani@iasf-milano.inaf.it
Vincenzo Testa
INAF - Osservatorio Astronomico di Roma
Monteporzio Catone, Italy
Teléfono: +39 06 9428 6482
Correo electrónico: vincenzo.testa@inaf.it
Roberto Turolla
University of Padova
Padova, Italy
Teléfono: +39-049-8277139
Correo electrónico: turolla@pd.infn.it
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6655
Celular: +49 151 1537 3591
Correo electrónico: rhook@eso.org
Francisco Rodríguez (Contacto para medios de comunicación en Chile)
Red de Difusión Científica de ESO
y European Southern Observatory
Teléfono: +56-2-463-3151
Correo electrónico: eson-chile@eso.org
Acerca de la nota de prensa
Nota de prensa No.: | eso1641es-cl |
Nombre: | RX J1856.5-3754 |
Tipo: | Milky Way : Star : Evolutionary Stage : Neutron Star |
Facility: | Very Large Telescope |
Instruments: | FORS2 |
Science data: | 2017MNRAS.465..492M |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.