By continuing to use this website, you are giving consent to our use of cookies.
For more information on how ESO uses data and how you can disable cookies, please view our privacy policy.

Kids

Nota de prensa

Einstein tenía razón — por ahora

Un púlsar que rompe todos los récords, nuevo campo de pruebas para la relatividad general

25 de Abril de 2013

Los astrónomos han utilizado el telescopio VLT (Very Large Telescope) de ESO, junto con otros radiotelescopios de todo el mundo, para encontrar y estudiar una estrambótica pareja de estrellas formada por la estrella de neutrones más masiva encontrada hasta el momento, orbitada por una estrella enana blanca. Esta nueva y extraña binaria nos permite poner a prueba la teoría de la gravedad de Einstein — la relatividad general — de una forma imposible hasta el momento. Hasta ahora, las nuevas observaciones encajan exactamente con las predicciones de la relatividad general y son inconsistentes con algunas teorías alternativas. Los resultados aparecerán en la revista Science del 26 de abril del 2013.

Un equipo internacional ha descubierto un exótico objeto doble formado por una pequeña, pero inusualmente pesada, estrella de neutrones que gira 25 veces por segundo sobre sí misma, orbitada por una estrella enana blanca que tarda dos horas y media en hacer una órbita completa. La estrella de neutrones es un púlsar que emite ondas de radio que pueden ser captadas desde la Tierra por los radiotelescopios. Al margen del interés que esta pareja genera por sí misma, se trata además de un laboratorio único para poner a prueba los límites de las teorías físicas.

Este pulsar se llama PSR J0348+0432 y se trata de los restos de una explosión de supernova. Es dos veces más pesada que el Sol, pero tiene solo 20 kilómetros de tamaño. La gravedad en su superficie es más de 300.000 millones de veces más fuerte que la de la Tierra y, en su centro, cada volumen equivalente a un cuadrado de azucar pesa más de mil millones de toneladas concentradas. Su compañera, la estrella enana blanca, solo es un poco menos exótica: es el brillante resto de una estrella mucho más ligera que ha perdido su atmósfera y se está enfriando lentamente.

Estaba observando el sistema con el Very Large Telescope de ESO, buscando cambios en la luz emitida por la enana blanca causados por su movimiento alrededor del púlsar”, afirma John Antoniadis, un estudiante de doctorado del Instituto Max Planck de  radioastronomía (MPIfR) en Bonn, y autor principal del artículo. “Un rápido análisis inmediato me hizo ver que el púlsar era muy pesado. Es el doble de la masa del Sol, lo que la convierte en la estrella de neutrones más masiva conocida hasta el momento y, al mismo tiempo, en un excelente laboratorio de física fundamental”.

La teoría de la relatividad general de Einstein, que explica la gravedad como una consecuencia de la curvatura del espacio-tiempo creada por la presencia de masa y energía, ha superado todas las pruebas desde que fue publicada por primera vez hace casi cien años. Pero no puede ser la explicación definitiva y en última instancia acabará siendo sustituida [1].

Los físicos han concebido otras teorías de la gravedad que hacen predicciones diferentes a las que plantea la relatividad general. Para algunas de estas alternativas, esas diferencias solo se mostrarían en campos gravitatorios extremadamente fuertes que no pueden encontrarse en el Sistema Solar. En términos de gravedad, PSR J0348+0432 es un objeto verdaderamente extremo, incluso comparado con los otros púlsares que han sido utilizados en pruebas de alta precisión de la relatividad general de Einstein [2]. En este tipo de campos gravitatorios tan fuertes, pequeños aumentos en la masa pueden desencadenar grandes cambios en el espacio-tiempo que rodea a estos objetos. Hasta ahora, los astrónomos no tenían ni idea de qué podría pasar en presencia de estrellas de neutrones tan masivas como PSR J0348+0432, por lo que se trata de una oportunidad única para llevar a cabo pruebas en campos inexplorados.

El equipo combinó observaciones de la estrella enana blanca llevadas a cabo con el Very Large Telescope con medidas muy precisas del púlsar obtenidas con radiotelescopios [3]. Una pareja tan cercana entre sí emite ondas gravitacionales y pierde energía. Esto hace que el periodo orbital cambie ligeramente y las predicciones de este cambio hechas por la relatividad general y otras teorías competidoras son diferentes.

Nuestras observaciones en radio eran tan precisas que ya hemos podido medir un cambio en el periodo orbital de 8 millonésimas de segundo por año, exactamente lo que predice la teoría de Einstein”, afirma Paulo Freire, otro miembro del equipo.

Esto es solo el principio de un estudio detallado de estos objetos únicos y los astrónomos los utilizarán para poner a  prueba la teoría de la relatividad general en busca de una mayor precisión a medida que pase el tiempo.

Notas

[1] La relatividad general no es consistente con la otra gran teoría de la física del siglo veinte, la mecánica cuántica. También predice singularidades bajo ciertas circunstancias, en las que algunas cantidades tienen a infinito, como el centro de un agujero negro.

[2] El primer púlsar binario, PSR B1913+16, fue descubierto por Joseph Hooton Taylor, Jr. y Russell Hulse, por lo que ganaron el Premio Nobel de Física de 1993. Midieron con precisión los cambios en las propiedades de este objeto tan destacado y demostraron que eran consistentes con las pérdidas de energía de radiación gravitatoria predichas por la relatividad general.

[3] Este trabajo utiliza datos de los radiotelescopios Effelsberg, Arecibo y Green Bank, así como de los telescopios ópticos Very Large Telescope de ESO y William Herschel Telescope.

Información adicional

Este trabajo fue presentado en el artículo “A Massive Pulsar in a Compact Relativistic Orbit”, por John Antoniadis et al., que aparece en la revista Science del 26 de abril de 2013.

El equipo está compuesto por Antoniadis (Instituto Max-Planck de Radioastronomía [MPIfR], Bonn, Alemania), Paulo C. C. Freire (MPIfR), Norbert Wex (MPIfR), Thomas M. Tauris (Instituto Argelander de Astronomía, Bonn, Alemania; MPIfR), Ryan S. Lynch (Universidad McGill, Montreal, Canadá), Marten H. van Kerkwijk (Universidad de Toronto, Canadá), Michael Kramer (MPIfR; Centro de Astrofísica Jodrell Bank, Universidad de Manchester, Reino Unido), Cees Bassa (Jodrell Bank), Vik S. Dhillon (Universidad de Sheffield, Reino Unido), Thomas Driebe (Deutsches Zentrum für Luft- und Raumfahrt, Bonn, Alemania), Jason W. T. Hessels (ASTRON, Instituto de Radioastronomía de los Países Bajos, Dwingeloo, Países Bajos; Universidad de Ámsterdam, Países Bajos), Victoria M. Kaspi (Universidad McGill), Vladislav I. Kondratiev (ASTRON; Instituto de Física Lebedev, Moscú, Russia), Norbert Langer (Instituto Argelander de Astronomía), Thomas R. Marsh (Universidad de Warwick, Reino Unido), Maura A. McLaughlin (Universidad West Virginia), Timothy T. Pennucci (Departamento de Astronomía, Universidad de Virginia) Scott M. Ransom (Onbservatorio Nacional de Radioastronomía, Charlottesville, EE.UU.), Ingrid H. Stairs (Universidad de British Columbia, Vancouver, Canadá), Joeri van Leeuwen (ASTRON; Universidad de Ámsterdam), Joris P. W. Verbiest (MPIfR), David G. Whelan (Departamento de Astronomía, Universidad de Virginia).

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de quince países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Holanda, Italia, Portugal, el Reino Unido, República Checa, Suecia y Suiza. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, el proyecto astronómico más grande en desarrollo. Actualmente ESO está planificando el European Extremely Large Telescope, E-ELT, el telescopio óptico y de infrarrojo cercano de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El
nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

John Antoniadis
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Teléfono: +49-228-525-181
Correo electrónico: jantoniadis@mpifr-bonn.mpg.de

Michael Kramer
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Teléfono: +49-228-525-278
Correo electrónico: mkramer@mpifr-bonn.mpg.de

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6655
Celular: +49 151 1537 3591
Correo electrónico: rhook@eso.org

Francisco Rodríguez (Contacto para medios de comunicación en Chile)
Red de Difusión Científica de ESO y European Southern Observatory
Teléfono: +56-2-463-3151
Correo electrónico: eson-chile@eso.org

Connect with ESO on social media

Esta es una traducción de la nota de prensa de ESO eso1319.

Acerca de la nota de prensa

Nota de prensa No.:eso1319es-cl
Nombre:PSR J0348+0432
Tipo:Milky Way : Star : Evolutionary Stage : Neutron Star : Pulsar
Facility:Very Large Telescope
Instruments:FORS2
Science data:2013Sci...340..448A

Imágenes

Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca
Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca
Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca
Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca
Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca
Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca

Videos

Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca
Impresión artística del púlsar PSR J0348+0432 y su compañera enana blanca