Nota de prensa
ALMA localiza una sorprendente estructura espiral
Nuevas observaciones revelan los secretos de una estrella moribunda
10 de Octubre de 2012
Utilizando el conjunto de telescopios ALMA (Atacama Large Millimeter/submillimeter Array) los astrónomos han descubierto una estructura espiral totalmente inesperada en el material que rodea a la vieja estrella R Sculptoris. Se trata de la primera vez que se encuentra este tipo de estructura, junto con la envoltura esférica, alrededor de una estrella gigante roja. También es la primera vez que los astrónomos han podido captar información tridimensional completa sobre esta espiral. Probablemente, la extraña forma fue creada por una estrella compañera oculta que orbita la estrella gigante roja. Este trabajo es uno de los primeros resultados científicos de ALMA que van a ser publicados y aparece en la revista Nature esta semana.
Utilizando el conjunto ALMA (Atacama Large Millimeter/submillimeter Array), el telescopio milimétrico/submilimétrico más potente del mundo, un equipo de astrónomos ha descubierto una sorprendente estructura espiral en el gas que rodea a la estrella gigante roja R Sculptoris [1][2][3]. Esto significa que, probablemente, exista una estrella compañera nunca antes vista orbitando a su alrededor [4]. Los astrónomos se sorprendieron al descubrir que la gigante roja ha eyectado mucho más material del esperado.
“Ya habíamos visto antes envolturas alrededor de estrellas de este tipo, pero es la primera vez que vemos una espiral de material saliendo de una estrella junto con una envoltura,” afirma el primer autor del artículo que presenta los resultados, Matthias Maercker (ESO e Instituto Argelander de Astronomía, Universidad de Bonn, Alemania).
Debido a que expulsan grandes cantidades de material, las estrellas gigantes rojas como R Sculptoris aportan la mayor parte del polvo y gas que forman la materia prima para la formación de futuras generaciones de estrellas, sistemas planetarios y, posteriormente, para la vida.
Incluso en su fase de ciencia temprana, cuando se llevaron a cabo las nuevas observaciones, ALMA superó a otros observatorios submilimétricos con creces. Observaciones anteriores mostraban claramente una envoltura esférica alrededor de R Sculptoris, pero no se detectaron ni la estructura espiral ni la estrella compañera.
"Cuando observamos la estrella con ALMA, aún no se habían instalado ni la mitad de las antenas. Es realmente emocionante imaginar qué podrá hacer el conjunto completo de ALMA una vez se termine de instalar en 2013," añade Wouter Vlemmings (Universidad Chalmers de Tecnología, Suecia), coautor del estudio.
En una fase tardía de su vida, las estrellas con masas superiores a ocho veces la del Sol se convierten en gigantes rojas y pierden una gran cantidad de su masa a través de un denso viento estelar. Durante la fase de gigante roja las estrellas también viven episodios periódicos de pulsos térmicos. Se trata de fases cortas de explosiones de helio quemándose en la envoltura que rodea el centro estelar. El pulso térmico lleva a la expulsión de material de la superficie de la estrella a un ritmo mucho mayor del habitual, lo cual genera la formación de una gran envoltura de gas y polvo alrededor de la estrella. Tras este pulso, el ritmo de pérdida de masa de la estrella vuelve a sus valores normales.
Los pulsos térmicos tienen lugar aproximadamente cada 10.000 o cada 50.000 años, y duran solo unos pocos cientos de años. Las nuevas observaciones de R Sculptoris muestran que sufrió un pulso térmico hace unos 1.800 años y que duró entorno a 200 años. La estrella compañera dio forma de estructura espiral a los vientos R Sculptoris.
“Aprovechando la capacidad de ALMA para distinguir los detalles más finos, y estudiando la forma de la envoltura y de la estructura espiral, podemos comprender mejor qué le pasó a la estrella antes, durante y después del pulso térmico”, dice Maercker. “Siempre supimos que ALMA nos proporcionaría una nueva visión del universo, pero es realmente emocionante que en esta etapa temprana, con uno de los primeros paquetes de resultados de las observaciones, estemos descubriendo cosas nuevas e inesperadas.”
Con el fin de describir las estructuras observadas alrededor de R Sculptoris, el equipo de astrónomos ha diseñado simulaciones por ordenador para seguir la evolución de un sistema binario [5]. Estos modelos encajan muy bien con las observaciones de ALMA.
"Es un verdadero reto describir teóricamente todos los detalles observados por ALMA, pero nuestros modelos muestran que vamos por el buen camino. ALMA nos está dando una nueva visión de lo que está pasando en esas estrellas y de qué podría pasarle al Sol en unos cuantos miles de millones de años a partir de ahora," afirma Shazrene Mohamed (Observatorio Astronómico de Sudáfrica), uno de los coautores del estudio.
“En un futuro próximo, las observaciones de estrellas como R Sculptoris con ALMA nos ayudarán a entender cómo los elementos de los que estamos compuestos están en lugares como la Tierra. También nos da pistas de cómo será el futuro lejano de nuestra propia estrella” concluye Matthias Maercker.
Notas
[1] R Sculptoris es un ejemplo de estrella de la rama asintótica gigante (AGB, Asymptotic Giant Branch). Se trata de estrellas con masas iniciales de entre 0,8 y 8 masas solares en las fases finales de sus vidas. Son gigantes frías y rojas con grandes pérdidas de masa en forma de fuertes vientos estelares, y son variables típicamente de periodos largos. Su estructura consiste en un corazón central tenue de carbono y oxígeno rodeado de un caparazón de helio e hidrógeno ardientes, y una enorme envoltura convectiva. Con el tiempo, el Sol se convertirá en una estrella AGB.
[2] La cobertura eyectada, formada alrededor de las estrellas AGB, se compone de gas y granos de polvo. Los granos de polvo pueden localizarse mirando la emisión térmica que se extiende desde las longitudes de onda del infrarrojo lejano hacia las ondas milimétricas. La emisión en longitudes de onda milimétricas de las moléculas de CO permite a los astrónomos obtener mapas de gran resolución de la emisión de gas proveniente de los fuertes vientos estelares generados por las estrellas AGB. Estas observaciones también son excelentes trazadores de la distribución de gas alrededor de estos objetos. La gran sensibilidad de ALMA hace posible obtener imagen directa de las zonas de condensación de polvo y de la estructura del material que hay alrededor de las estrellas AGB, mostrando detalles más pequeños que 0,1 segundos de arco.
[3] El telescopio espacial Hubble (NASA/ESA) ha observado una espiral similar, pero no su envoltura. Se trata de las observaciones de la estrella LL Pegasi. Pero, al contrario que en las nuevas observaciones de ALMA, estos datos no permitieron estudiar la estructura tridimensional completa. Las observaciones del Hubble detectaron el polvo y ALMA la emisión molecular.
[4] Las binarias ocultas también se han sugerido como explicación par alas extrañas formas observadas en objetos relacionados, como las nebulosa planetarias. Tras la fase AGB, estrellas de baja masa o de masa intermedia (0,8–8 masas solares) terminarían sis vidas formando una nebulosa planetaria. Estos son los retos brillantes de la envoltura estelar de gas eyectado durante la fase AGB, ionizado por la radiación ultravioleta emitida por la estrella central. Muchas nebulosas planetarias tienen morfologías extremadamente complejas y variadas. Se ha sugerido que los mecanismos que producen tanta variedad de formas pueden ser estrellas binarias centrales, discos estelares y campos magnéticos.
[5] El sistema modelado consiste en una estrella primaria AGB, con una pequeña estrella compañera, que atraviesa una fase de pulso térmico. La separación entre las estrellas utilizada en la simulación es de 60 unidades astronómicas con una masa total del sistema de dos masas solares. El periodo orbital es de 350 años.
Información adicional
Esta investigación ha sido presentada en el artículo “Inesperada gran pérdida de masa durante el ciclo de pulso térmico de la estrella gigante roja R Sculptori (Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris)”, por Maercker et al. que aparecerá en la revista Nature.
El equipo está compuesto por M. Maercker (ESO; Instituto Argelander de Astronomía, Universidad de Bonn, Alemania), S. Mohamed (Instituto Argelander de Astronomía; Observatorio Astronómico de Sudáfrica, Sudáfrica), W. H. T. Vlemmings (Observatorio Espacial de Onsala, Universidad Chalmers de Tecnología, Onsala, Suecia), S. Ramstedt (Instituto Argelander), M. A. T. Groenewegen (Real Observatorio de Bélgica, Bruselas, Bélgica), E. Humphreys (ESO), F. Kerschbaum (Departamento de Astronomía, Universidad de Viena, Austria), M. Lindqvist (Observatorio Espacial de Onsala), H. Olofsson (Observatorio Espacial de Onsala), C. Paladini (Departamento de Astronomía, Universidad de Viena, Austria), M. Wittkowski (ESO), I. de Gregorio-Monsalvo (Observatorio Conjunto ALMA, Chile) y L. A. Nyman (Observatorio Conjunto ALMA).
El año 2012 marca el 50 aniversario de la creación del Observatorio Europeo Austral (European Southern Observatory, ESO). ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Quince países apoyan esta institución: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Holanda, Italia, Portugal, el Reino Unido, República Checa, Suecia y Suiza. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera tres sitios únicos de observación de categoría mundial en Chile: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (sigla en inglés del Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, el proyecto astronómico más grande en desarrollo. Actualmente ESO está planificando el European Extremely Large Telescope, E-ELT, el telescopio óptico y de infrarrojo cercano de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una colaboración entre Europa, América del Norte y Asia Oriental en cooperación con la República de Chile. ALMA está financiado en Europa por el Observatorio Europeo Austral (ESO), en América del Norte por la Fundación Nacional de Ciencia de los Estados Unidos (NSF) en cooperación con Consejo Nacional de Investigación de Canadá (NRC) y el Consejo Nacional de Ciencias (NSC) de Taiwán; y en Asia Oriental por los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la Academia Sinica (AS) de Taiwán. La construcción y operaciones de ALMA en Europa están lideradas por ESO; en América del Norte por el National Radio Astronomy Observatory (NRAO), gestionado por Associated Universities, Inc. (AUI); y en Asia Oriental por el Observatorio Astronómico Nacional de Japón (NAOJ). El Observatorio Conjunto ALMA (Joint ALMA Observatory, JAO) proporciona al proyecto la unificación tanto del liderazgo como de la gestión de la construcción, puesta a punto y operación de ALMA.
Enlaces
- Artículo de investigación en Nature
- Más sobre ALMA en ESO
- El Observatorio Conjunto ALMA (Joint ALMA Observatory)
Contactos
Matthias Maercker
ESO ALMA Cofund Fellow
Argelander Institute for Astronomy, University of Bonn, Germany
Teléfono: +49 228 735768
Celular: +49 176 706 21 632
Correo electrónico: maercker@astro.uni-bonn.de
Wouter Vlemmings
Onsala Space Observatory
Chalmers University of Technology, Sweden
Teléfono: +46 31 772 5509
Celular: +46 733 544 667
Correo electrónico: wouter.vlemmings@chalmers.se
Shazrene S. Mohamed
Postdoctoral Research Fellow
South African Astronomical Observatory, Cape Town, South Africa
Teléfono: +27 21 447 0025 ext 7025
Celular: +27 729 661 707
Correo electrónico: shazrene@saao.ac.za
Douglas Pierce-Price
Public Information Officer, ESO
Garching bei München, Germany
Teléfono: +49 89 3200 6759
Correo electrónico: dpiercep@eso.org
Francisco Rodríguez (Contacto para medios de comunicación en Chile)
Red de Difusión Científica de ESO
y European Southern Observatory
Teléfono: +56-2-463-3151
Correo electrónico: eson-chile@eso.org
Acerca de la nota de prensa
Nota de prensa No.: | eso1239es-cl |
Nombre: | R Sculptoris |
Tipo: | Milky Way : Star : Type : Variable |
Facility: | Atacama Large Millimeter/submillimeter Array |
Science data: | 2012Natur.490..232M |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.