Pressemitteilung
Rätselhafter Radioausbruch erhellt den ruhigen Halo einer Galaxie
26. September 2019
Astronomen haben mit dem Very Large Telescope der ESO zum ersten Mal beobachtet, dass ein schneller Radioausbruch durch einen galaktischen Halo streifte. Mit einer Dauer von weniger als einer Millisekunde kam diese rätselhafte Explosion kosmischer Radiowellen fast ungestört durch, was darauf hindeutet, dass der Halo eine überraschend geringe Dichte und ein schwaches Magnetfeld aufweist. Diese neue Technik könnte verwendet werden, um die schwer fassbaren Halos anderer Galaxien zu erforschen.
Indem sie ein kosmisches Rätsel benutzten, um ein anderes zu erforschen, analysierten Astronomen das Signal eines schnellen Radioausbruchs, um Aufschluss über das diffuse Gas im Halo einer massereichen Galaxie zu geben [1]. Im November 2018 lokalisierte das Australian Square Kilometre Array Pathfinder (ASKAP) Radioteleskop einen schnellen Radioburst, genannt FRB 181112. Nachfolgende Beobachtungen mit dem Very Large Telescope (VLT) der ESO und anderen Teleskopen ergaben, dass die Radiopulse auf dem Weg zur Erde durch den Halo einer gigantischen Galaxie gegangen sind. Dieser Befund ermöglichte es Astronomen, das Radiosignal nach Hinweisen auf die Art des Halogases zu analysieren.
„Das Signal des schnellen Radioausbruchs deckte die Beschaffenheit des Magnetfeldes um die Galaxie und die Struktur des Halogases auf. Die Studie erweist sich als eine neue und zukunftsweisende Technik zur Erforschung der Eigenschaften von Galaxienhalos“, sagt J. Xavier Prochaska, Professor für Astronomie und Astrophysik an der University of California Santa Cruz und Hauptautor eines Aufsatzes, der die heute in der Zeitschrift Science veröffentlichten neuen Erkenntnisse vorstellt.
Astronomen wissen immer noch nicht, was schnelle Radioausbrüche verursacht. Erst kürzlich konnten sie einige dieser sehr kurzen, sehr hellen Radiosignale bis in die Galaxien zurückverfolgen, aus denen sie stammen. „Als wir die Radio- und optischen Bilder überlagerten, konnten wir sofort sehen, dass der schnelle Radioburst den Halo dieser zufälligen Vordergrundgalaxie durchdrang. Zum ersten Mal hatten wir eine direkte Möglichkeit, die ansonsten unsichtbare Materie um diese Galaxie herum zu untersuchen“, erzählt Koautorin Cherie Day, Doktorandin an der Swinburne University of Technology, Australien.
Ein galaktischer Halo enthält sowohl dunkle als auch gewöhnliche oder baryonische Materie, die hauptsächlich in Form von heißem ionisiertem Gas vorliegt. Während der leuchtende Teil einer massereichen Galaxie etwa 30 000 Lichtjahre umfassen kann, ist ihr etwa kugelförmiger Halo im Durchmesser zehnmal größer. Halogas treibt die Sternentstehung an, wenn sie in Richtung Zentrum der Galaxie fällt, während andere Prozesse, wie z.B. Supernova-Explosionen, Material aus den sternbildenden Regionen in den galaktischen Halo ausstoßen können. Ein Grund, warum Astronomen das Halogas untersuchen wollen, ist das bessere Verständnis dieser Auswurfprozesse, die die Sternbildung unterbinden können.
„Der Halo dieser Galaxie ist überraschend ruhig“, sagt Prochaska. „Das Radiosignal wurde von der Galaxie weitgehend unbeeinflusst, was im krassen Gegensatz zu dem steht, was frühere Modelle im Falle des Ausbruchs vorhergesagt hatten.“
Das Signal von FRB 181112 bestand aus einigen wenigen Impulsen, die jeweils weniger als 40 Mikrosekunden dauerten (10 000 mal kürzer als ein Augenzwinkern). Die kurze Dauer der Impulse setzt der Dichte des Halogases eine Obergrenze, da der Durchgang durch ein dichteres Medium die Dauer des Radiosignals verlängern würde. Die Forscher berechneten, dass die Dichte des Halogases weniger als 0,1 Atome pro Kubikzentimeter betragen muss (was mehreren hundert Atomen in einem Volumen von der Größe eines Kinderballons entspricht) [2].
„Wie die schimmernde Luft an einem heißen Sommertag sollte die dünne Atmosphäre in dieser riesigen Galaxie das Signal des schnellen Radioausbruchs verzerren. Stattdessen erhielten wir einen Puls, der so unverfälscht und scharf war, dass es überhaupt keine Signatur dieses Gases gab“, erklärt Co-Autor Jean-Pierre Macquart, Astronom am International Center for Radio Astronomy Research an der Curtin University, Australien.
Die Studie fand keine Hinweise auf kalte turbulente Wolken oder kleine dichte Klumpen von kühlem Halogas. Das schnelle Radioburstsignal lieferte auch Informationen über das Magnetfeld im Halo, das sehr schwach ist – eine Milliarde Mal schwächer als das eines Kühlschrankmagneten.
An dieser Stelle, mit Ergebnissen von nur einem galaktischen Halo, können die Forscher nicht sagen, ob die von ihnen gemessene niedrige Dichte und geringe Magnetfeldstärke ungewöhnlich sind oder ob frühere Studien über galaktische Halos diese Eigenschaften überschätzt haben. Prochaska sagte, dass er erwartet, dass ASKAP und andere Radioteleskope schnelle Radioausbrüche verwenden werden, um viele weitere galaktische Halos zu untersuchen und ihre Eigenschaften zu ergründen.
„Diese Galaxie könnte etwas Besonderes sein“, gibt er zu bedenken. „Wir müssen schnelle Radiopulse verwenden, um Dutzende oder Hunderte von Galaxien über eine Reihe von Massen und Altersgruppen zu untersuchen, um die gesamte Population zu beurteilen.“ Optische Teleskope wie das VLT der ESO spielen eine wichtige Rolle, indem sie zeigen, wie weit die Galaxie, in der jeder Burst stattfand, entfernt ist und ob der Burst durch den Halo einer Galaxie im Vordergrund gegangen wäre.
Endnoten
[1] Ein riesiger Halo aus Gas niedriger Dichte erstreckt sich weit über den leuchtenden Teil einer Galaxie hinaus, in dem die Sterne konzentriert sind. Obwohl die Masse dieses heißen, diffusen Gases mehr ausmacht als die der Sterne, ist es sehr schwierig zu untersuchen.
[2] Die Dichteschranken begrenzen auch die Möglichkeit von Turbulenzen oder Wolken von kaltem Gas im Halo. Kühl ist hier ein relativer Begriff, der sich auf Temperaturen um 10 000°C bezieht, im Vergleich zum heißen Halogengas von etwa 1 Million Grad.
Weitere Informationen
Diese Forschung wurde in einem Artikel vorgestellt, der am 26. September 2019 in der Zeitschrift Science veröffentlicht wurde.
Das Team besteht aus J. Xavier Prochaska (University of California Observatories-Lick Observatory, University of California, USA und Kavli Institute for the Physics and Mathematics of the Universe, Japan), Jean-Pierre Macquart (International Centre for Radio Astronomy Research, Curtin University, Australien), Matthew McQuinn (Astronomy Department, University of Washington, USA), Sunil Simha (University of California Observatories-Lick Observatory, University of California, USA), Ryan M. Shannon (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australien), Cherie K. Tag (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australien und Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australien), Lachlan Marnoch (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australien und Department of Physics and Astronomy, Macquarie University, Australien), Stuart Ryder (Department of Physics and Astronomy, Macquarie University, Australien), Adam Deller (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australien), Keith W. Bannister (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australien), Shivani Bhandari (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australien), Rongmon Bordoloi (North Carolina State University, Department of Physics, USA), John Bunton (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australien), Hyerin Cho (School of Physics and Chemistry, Gwangju Institute of Science and Technology, Korea), Chris Flynn (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australien), Elizabeth Mahony (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australien), Chris Phillips (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australien), Hao Qiu (Sydney Institute for Astronomy, School of Physics, University of Sydney, Australien), Nicolas Tejos (Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Chile).
ESO ist die führende zwischenstaatliche astronomische Organisation in Europa und mit Abstand das produktivste bodengebundene astronomische Observatorium der Welt. Sie hat 16 Mitgliedstaaten: Österreich, Belgien, die Tschechische Republik, Dänemark, Frankreich, Finnland, Deutschland, Irland, Italien, die Niederlande, Polen, Portugal, Spanien, Schweden, die Schweiz und das Vereinigte Königreich sowie der Gaststaat Chile und Australien als strategischer Partner. Die ESO führt ein ehrgeiziges Programm durch, das sich auf die Planung, den Bau und den Betrieb leistungsfähiger bodengebundener Beobachtungseinrichtungen konzentriert, die es Astronomen ermöglichen, wichtige wissenschaftliche Entdeckungen zu machen. Die ESO spielt auch eine führende Rolle bei der Förderung und Organisation der Zusammenarbeit in der astronomischen Forschung. ESO betreibt drei einzigartige Weltklasse-Beobachtungsstätten in Chile: La Silla, Paranal und Chajnantor. Am Paranal betreibt die ESO das Very Large Telescope und sein weltweit führendes Very Large Telescope Interferometer sowie zwei Durchmusterungsteleskope: VISTA arbeitet im Infrarotbereich und das VLT Survey Telescope im sichtbaren Bereich. Ebenfalls am Standort Paranal wird die ESO das Cherenkov Telescope Array South, das weltweit größte und empfindlichste Gammastrahlenobservatorium, betreuen und betreiben. ESO ist auch ein wichtiger Partner in zwei Anlagen auf Chajnantor, APEX und ALMA, dem größten existierenden astronomischen Projekt. Auf dem Cerro Armazones, in der Nähe des Paranal, baut die ESO das 39 Meter große Extremely Large Telescope (ELT), welches „das größte Auge der Welt mit Blick in den Himmel“ sein wird.
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.
Links
Kontaktinformationen
J. Xavier Prochaska
UCO/Lick Observatory — UC Santa Cruz
USA
Tel: +1 (831) 295-0111
E-Mail: xavier@ucolick.org
Cherie Day
Centre for Astrophysics and Supercomputing — Swinburne University of Technology
Australia
Tel: +61 4 5946 3110
E-Mail: cday@swin.edu.au
Mariya Lyubenova
ESO Head of Media Relations
Garching bei München, Germany
Tel: +49 89 3200 6188
E-Mail: pio@eso.org
Peter Habison (Pressekontakt Österreich)
ESO Science Outreach Network
und stem & mint e.U. – Space and Science Communications
Vienna, Austria
Tel: +43 676 648 7003
E-Mail: eson-austria@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1915de-at |
Name: | FRB 181112 |
Typ: | Early Universe : Galaxy : Activity : AGN |
Facility: | Very Large Telescope |
Instruments: | FORS2 |
Science data: | 2019Sci...366..231P |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.