Press Release

First Rotation Period of a Kuiper Belt Object Measured

News from ESO Workshop on Minor Bodies in the Outer Solar System

5 November 1998

An ESO Workshop on Minor Bodies in the Outer Solar System (ESO MBOSS-98) was held at the ESO Headquarters in Garching, Germany, during November 2-5, 1998. Among these objects, the newly discovered Kuiper Belt Objects (KBO's) outside the orbit of planet Neptune (also known as Trans-Neptunian Objects) are of particular interest, but the meeting was also concerned with distant comets and some of the small moons of the outer planets.

An ESO Workshop on Minor Bodies in the Outer Solar System (ESO MBOSS-98) was held at the ESO Headquarters in Garching, Germany, during November 2-5, 1998. Among these objects, the newly discovered Kuiper Belt Objects (KBO's) outside the orbit of planet Neptune (also known as Trans-Neptunian Objects) are of particular interest, but the meeting was also concerned with distant comets and some of the small moons of the outer planets.

During these four days, about 50 specialists from all parts of the world, observers as well as theoreticians, had a very fruitful discussion about this rapidly expanding research field. In particular, they identified some of the crucial questions for which answers are required in order to advance our overall picture of the formation, evolution and interaction of these distant bodies. Specific plans were made for collaborative studies of the outer Solar System during the coming years.

The workshop served to review and discuss current knowledge of all minor bodies beyond the asteroid belt, as well as their origins and inter-relationships. Special emphasis was placed on the optimal use of next-generation observational facilities, such as the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) and the Keck telescope at Mauna Kea (Hawaii, USA). The participants enthusiastically identified several front-line observational investigations that will take full advantage of these powerful astronomical facilities.

Kuiper Belt Objects

The Kuiper Belt is a zone outside the orbits of Neptune and Pluto in which icy solar system objects were expected to be present; the first was found in 1992. Since then, more than 70 KBO's have been found in orbits between approximately 30 AU and 50 AU from the Sun (4.5 to 7.5 · 10 9 km). One of them (designated 1996 TL66 ) even reaches a distance of 135 AU (20 · 10 9 km, i.e. 4.5 times the heliocentric distance of Neptune) when it is farthest away. It is estimated that there may be at least 100,000 KBO's larger than 100 km.

These objects probably represent the remnants of a much larger population of such objects, formed in the early phase of the solar system, some 4.5 billion years ago. Gravitational effects from the outer planets Neptune and Uranus and collisions soon reduced their numbers. The outermost planet Pluto is most probably the largest member of this class of objects.

Because of their large distance, and despite their significant size, 100 - 500 km diameter, they are all very faint and can only be observed with large telescopes. Except for their orbits, little is known about most of them, although recent observations have shown that they have different colours, ranging from rather blueish to red.

According to current ideas, the short period comets observed in the inner solar system come from the Kuiper Belt and their kilometre-size "dirty snowball" nuclei are simply small KBO's.

First rotational period of a KBO measured at La Silla

Among the highlights of this workshop was the presentation of a detailed portrait of a Kuiper-Belt Object, designated as 1996 TO66 . It was discovered in October 1996 by a group of astronomers from the University of Hawaii, during a survey aimed at discovering KBO's. It is one of the brightest trans-neptunian objects known to date; its magnitude is 21.2, i.e. it is about 1.5 million times fainter than the faintest stars visible by naked eye.

A group of European astronomers [2] used the ESO 3.6-m New Technology Telescope (NTT) at the La Silla observatory during 6 nights in August and October 1997 to obtain very accurate observations of 1996 TO66 , while is was at a distance of about 45 AU.

During these nights, they took over 50 images of the object through different optical filters; on each of these, they carefully measured its brightness. The resulting "light-curve", i.e. the change of brightness with time, shows a clear variation with a period of a little over 6 hours. This is caused by rotation of the object. It is the first time it has been possible to determine a rotation period of any KBO.

From the mean brightness of 1996 TO66 , it was estimated that the diameter is of the order of 600 km. This corresponds to just under one third of the size of the outermost planet Pluto, making 1996 TO66 one of the largest known KBO's. The light-curve also indicates that the object is somewhat elongated (one axis is at least 10% larger than the others), and that the surface may possibly have some darker and brighter regions.

Implications

This first measurement of the rotation period of a KBO is important: as 1996 TO66 is a comparatively large body, it is most likely that the rotation period has not changed much since its formation, 4.5 billion years ago. This is one more precious piece of information to our still very sparse knowledge about the processes that took place when our solar system was formed. Interestingly, (2060) Chiron , a minor planet in orbit between Saturn and Uranus that is thought to have originally come from the Kuiper Belt, also rotates with a period near 6 hours.

A comparison of 1996 TO66 's brightness as measured through different optical filters, indicates that it is of a grey-blue colour, similar to that of Pluto's moon, Charon , and also the KBO 1996 TL66 .

Very little is still known about the physical nature of the KBO's. They are so remote and faint that their study, even with large telescopes, is near the observational limits of what is possible. Nevertheless, new results like these now pave the way towards a better understanding of the current population of minor bodies in the outer reaches of our solar system.

When more observations of KBO's with large telescopes like the VLT become available during the next years, it is expected that trends in their measured physical properties (e.g. rotational state, surface properties) will emerge. This will in turn permit more specific conclusions about the structure of the proto-planetary disk and the processes by which the planets and the KBO's were formed.

Notes

[1] ESO Video News Reel 2 was published on November 18, 1998. It contains video material related to the new observations of Trans-Neptunian Object "1996 TO" described above. In addition to sequences from the La Silla observatory and the NTT, there is a comprehensive statement by one of the participating ESO scientists.

[2] The group consists of Olivier Hainaut, Catherine Delahodde and Hermann Boehnhardt (ESO La Silla) and Elisabetta Dotto and Maria Antonietta Barucci (Observatoire de Paris).

Connect with ESO on social media

About the Release

Release No.:eso9851
Legacy ID:Photo 41/98
Name:1996 TO66, Kuiper Belt Objects, Meeting
Type: Solar System
Solar System : Interplanetary Body : Dwarf planet
Facility:New Technology Telescope
Instruments:EMMI

Images

First rotation period of a Kuiper Belt Object measured
First rotation period of a Kuiper Belt Object measured

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.