Press Release
The Blob, the Very Rare Massive Star and the Two Populations
Striking Image of Nebula N214C taken with ESO's NTT at La Silla
22 April 2005
The nebula N214 [1] is a large region of gas and dust located in a remote part of our neighbouring galaxy, the Large Magellanic Cloud. N214 is a quite remarkable site where massive stars are forming. In particular, its main component, N214C (also named NGC 2103 or DEM 293), is of special interest since it hosts a very rare massive star, known as Sk-71 51 [2] and belonging to a peculiar class with only a dozen known members in the whole sky. N214C thus provides an excellent opportunity for studying the formation site of such stars.
Using ESO's 3.5-m New Technology telescope (NTT) located at La Silla (Chile) and the SuSI2 and EMMI instruments, astronomers from France and the USA [3] studied in great depth this unusual region by taking the highest resolution images so far as well as a series of spectra of the most prominent objects present.
N214C is a complex of ionised hot gas, a so-called H II region [4], spreading over 170 by 125 light-years. At the centre of the nebula lies Sk-71 51, the region's brightest and hottest star. At a distance of ~12 light-years north of Sk-71 51 runs a long arc of highly compressed gas created by the strong stellar wind of the star. There are a dozen less bright stars scattered across the nebula and mainly around Sk-71 51. Moreover, several fine, filamentary structures and fine pillars are visible.
The green colour in the composite image, which covers the bulk of the N214C region, comes from doubly ionised oxygen atoms [5] and indicates that the nebula must be extremely hot over a very large extent.
The Star Sk-71 51 decomposed
The central and brightest object is not a single star but a small, compact cluster of stars. In order to study this very tight cluster in great detail, the astronomers used sophisticated image-sharpening software to produce high-resolution images on which precise brightness and positional measurements could then be performed. This so-called "deconvolution" technique makes it possible to visualize this complex system much better, leading to the conclusion that the tight core of the Sk-71 51 cluster, covering a ~ 4 arc seconds area, is made up of at least 6 components.
From additional spectra taken with EMMI (ESO Multi-Mode Instrument), the brightest component is found to belong to the rare class of very massive stars of spectral type O2 V((f*)). The astronomers derive a mass of ~80 solar masses for this object but it might well be that this is a multiple system, in which case, each component would be less massive.
Stellar populations
From the unique images obtained and reproduced, the astronomers could study in great depth the properties of the 2341 stars lying towards the N214C region. This was done by putting them in a so-called colour-magnitude diagram, where the abscissa is the colour (representative of the temperature of the object) and the ordinate the magnitude (related to the intrinsic brightness). Plotting the temperature of stars against their intrinsic brightness reveals a typical distribution that reflects their different evolutionary stages.
Two main stellar populations show up in this particular diagram: a main sequence, that is, stars that like the Sun are still centrally burning their hydrogen, and an evolved population. The main sequence is made up of stars with initial masses from roughly 2-4 to about 80 solar masses. The stars that follow the red line are main sequence stars still very young, with an estimated age of about 1 million years only. The evolved population is mainly composed of much older and lower mass stars, having an age of 1,000 million years.
From their work, the astronomers classified several massive O and B stars, which are associated with the H II region and therefore contribute to its ionisation.
A Blob of Ionised Gas
A remarkable feature of N214C is the presence of a globular blob of hot and ionised gas at ~ 60 arc seconds (~ 50 light-years in projection) north of Sk-71 51. It appears as a sphere about four light-years across, split into two lobes by a dust lane which runs along an almost north-south direction. The blob seems to be placed on a ridge of ionised gas that follows the structure of the blob, implying a possible interaction.
The H II blob coincides with a strong infrared source, 05423-7120, which was detected with the IRAS satellite. The observations indicate the presence of a massive heat source, 200,000 times more luminous than the Sun. This is more probably due to an O7 V star of about 40 solar masses embedded in an infrared cluster. Alternatively, it might well be that the heating arises from a very massive star of about 100 solar masses still in the process of being formed.
"It is possible that the blob resulted from massive star formation following the collapse of a thin shell of neutral matter accumulated through the effect of strong irradiation and heating of the star Sk-71 51", says Mohammad Heydari-Malayeri from the Observatoire de Paris (France) and member of the team."Such a "sequential star formation" has probably occurred also toward the southern ridge of N214C".
Newcomer to the Family
The compact H II region discovered in N214C may be a newcomer to the family of HEBs ("High Excitation Blobs") in the Magellanic Clouds, the first member of which was detected in LMC N159 at ESO. In contrast to the typical H II regions of the Magellanic Clouds, which are extended structures spanning more than 150 light years and are powered by a large number of hot stars, HEBs are dense, small regions usually "only" 4 to 9 light-years wide. Moreover, they often form adjacent to or apparently inside the typical giant H II regions, and rarely in isolation.
"The formation mechanisms of these objects are not yet fully understood but it seems however sure that they represent the youngest massive stars of their OB associations", explains Frederic Meynadier, another member of the team from the Observatoire de Paris. "So far only a half-dozen of them have been detected and studied using the ESO telescopes as well as the Hubble Space Telescope. But the stars responsible for the excitation of the tightest or youngest members of the family still remain to be detected."
Notes
[1]: The letter "N" (for "Nebula") in the designation of these objects indicates that they were included in the "Catalogue of H-alpha emission stars and nebulae in the Magellanic Clouds" compiled and published in 1956 by American astronomer-astronaut Karl Henize (1926 - 1993).
[2]: The name Sk-71 51, is the abbreviation of Sanduleak -71 51. The American astronomer Nicholas Sanduleak, while working at the Cerro Tololo Observatory, published in 1970 an important list of objects (stars and nebulae showing emission-lines in their spectra) in the Magellanic Clouds. The "-71" in the star's name is the declination of the object, while the "51" is the entry number in the catalogue.
[3]: The team of astronomers consists of Frederic Meynadier and Mohammad Heydari-Malayeri (LERMA, Paris Observatory, France), and Nolan R. Walborn (Space Telescope Science Institute, USA).
[4]: A gas is said to be ionised when its atoms have lost one or more electrons - in this case by the action of energetic ultraviolet radiation emitted by very hot and luminous stars close by. The heated gas shines mostly in the light of ionized hydrogen (H) atoms, leading to an emission nebula. Such nebulae are referred to as "H II regions". The well-known Orion Nebula is an outstanding example of that type of nebula.
[5]: The hotter the central object of an emission nebula, the hotter and more excited will be the surrounding nebula. The word "excitation" refers to the degree of ionization of the nebular gas. The more energetic the impinging particles and radiation, the more electrons will be lost and higher is the degree of excitation. In N214C, the central cluster of stars is so hot that the oxygen atoms are twice ionized, i.e. they have lost two electrons.
More information
The research made on N214C has been presented in a paper accepted for publication by the leading professional journal, Astronomy and Astrophysics ("The LMC H II Region N214C and its peculiar nebular blob", by F. Meynadier, M. Heydari-Malayeri and Nolan R. Walborn). The full text is freely accessible as a PDF file from the A&A web site.
Technical Information
The images are false-colour composite images based on observations made with the SuSI2 instrument on the ESO New Technology Telescope through different filters. The observations were made on 28 September 2002 when the sky quality was very good (seeing of 0.5-0.8 arc second). To record in great detail the nebulosity, the exposures were taken through narrow band filters centred on the emission lines Hydrogen-alpha (656.2 nm), Oxygen III (500.7 nm) and Hydrogen-beta (486.2 nm). Basic exposures of 300 seconds were obtained, with 2 exposures being taken for the first two filters and four for the O III image. For the study of the stars in the field, further exposures through broadband filters B, V and R were also taken, with a total of 240 seconds for the B and V filters and of 120 seconds for the R filter. All these exposures were then associated with a given channel to produce the final composite: R and H-alpha to red, V and [O III] to green and H-beta and B to blue. Haennes Heyer (ESO) made the final processing of the image.
Contacts
Mohammad Heydari-Malayeri
LERMA, Observatoire de Paris
Paris, France
Tel: +33 1 40 51 20 76
Email: m.heydari@obspm.fr
About the Release
Release No.: | eso0513 |
Legacy ID: | Photo 12a-e/05 |
Name: | DEM 293, LMC, N214C, NGC 2103, Sk-71 51 |
Type: | Local Universe : Nebula : Appearance : Emission : H II Region |
Facility: | New Technology Telescope |
Instruments: | EMMI, SUSI2 |
Science data: | 2005A&A...436..117M |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.