Nota de Imprensa

A deteção mais distante do campo magnético de uma galáxia

6 de Setembro de 2023

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), os astrónomos detectaram o campo magnético de uma galáxia tão distante que a sua luz demorou mais de 11 mil milhões de anos a chegar até nós: estamos a observá-la quando o Universo tinha apenas 2,5 mil milhões de anos de idade. Este resultado forneceu aos astrónomos pistas cruciais sobre como é que se formaram os campos magnéticos de galáxias tais como a nossa Via Láctea.

Há imensos objetos no Universo que apresentam campos magnéticos, sejam eles planetas, estrelas ou galáxias. “As pessoas podem não se aperceber mas na nossa Galáxia e noutras galáxias entrelaçam-se campos magnéticos com dimensões da ordem das dezenas de milhares de anos-luz,” diz James Geach, professor de astrofísica na Universidade de Hertfordshire, no Reino Unido, e autor principal deste estudo publicado hoje na revista Nature.

Na realidade, sabemos muito pouco relativamente à formação destes campos magnéticos, apesar de serem fundamentais para compreendermos a evolução galáctica,” acrescenta Enrique Lopez Rodriguez, investigador na Universidade de Stanford, EUA, que também participou no estudo. Não é claro quão cedo na vida do Universo, e quão rápido, é que os campos magnéticos se formaram nas galáxias, isto porque, até agora, os astrónomos apenas mapearam campos magnéticos em galáxias próximo de nós.

Agora, e com o auxílio do ALMA, do qual o Observatório Europeu do Sul (ESO) é um parceiro, Geach e a sua equipa descobriram um campo magnético completamente formado numa galáxia distante, semelhante em estrutura àqueles observados em galáxias próximas. O campo é cerca de mil vezes mais fraco do que o campo magnético da Terra, mas estende-se ao longo de mais de 16 000 anos-luz.

Esta descoberta dá-nos novas pistas sobre como é que os campos magnéticos se formam à escala galáctica,” explica Geach. A observação de um campo magnético completamente desenvolvido tão cedo na história do Universo indica que os campos magnéticos que englobam galáxias inteiras podem formar-se rapidamente na altura em as galáxias jovens ainda se estão a desenvolver.

A equipa acredita que a formação estelar intensa no Universo primordial poderá acelerar o desenvolvimento de campos magnéticos. Adicionalmente, estes campos podem, por sua vez, influenciar o modo como se formam as gerações seguintes de estrelas. Rob Ivison, co-autor do trabalho e astrónomo do ESO, afirma que esta descoberta abre “uma nova janela para o funcionamento interno das galáxias, uma vez que os campos magnéticos estão ligados ao material que está a formar novas estrelas.

Para fazer esta deteção, a equipa observou a radiação emitida por grãos de poeira de uma galáxia distante, 9io9 [1]. As galáxias estão repletas de grãos de poeira e quando um campo magnético se encontra presente, estes grãos tendem a alinhar-se, fazendo com que a radiação que emitem seja polarizada. Isto significa que as ondas de luz oscilam segundo uma direção privilegiada, em vez de aleatória. Quando o ALMA detectou e mapeou um sinal polarizado emitido pela 9io9, confirmou-se pela primeira vez a presença de um campo magnético numa galáxia muito distante.

Nenhum outro telescópio teria conseguido fazer esta observação,” diz Geach. A esperança é que com esta e outras observações futuras de campos magnéticos distantes, começaremos a desvendar o mistério da formação destas estruturas galácticas fundamentais.

Notas

[1] A galáxia 9io9 foi descoberta no âmbito de um projeto científico de cidadão. A descoberta teve a ajuda de espetadores do programa “Stargazing Live” da televisão britânica BBC. Em 2014, durante três noites, pediu-se ao público que examinasse milhões de imagens com o objetivo de se procurarem galáxias distantes.

Informações adicionais

Este trabalho de investigação foi descrito num artigo científico publicado na revista Nature.

A equipa é composta por: J. E. Geach (Centre for Astrophysics Research, School of Physics, Engineering and Computer Science, University of Hertfordshire, Reino Unido [Hertfordshire]), E. Lopez-Rodriguez (Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, EUA), M. J. Doherty (Hertfordshire), Jianhang Chen (Observatório Europeu do Sul, Garching, Alemanha [ESO]), R. J. Ivison (ESO), G. J. Bendo (UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Reino Unido), S. Dye (School of Physics and Astronomy, University of Nottingham, Reino Unido) e K. E. K. Coppin (Hertfordshire).

O Observatório Europeu do Sul (ESO) ajuda cientistas de todo o mundo a descobrir os segredos do Universo, o que, consequentemente, beneficia toda a sociedade. No ESO concebemos, construimos e operamos observatórios terrestres de vanguarda — os quais são usados pelos astrónomos para investigar as maiores questões astronómicas da nossa época e levar ao público o fascínio da astronomia — e promovemos colaborações internacionais em astronomia. Estabelecido como uma organização intergovernamental em 1962, o ESO é hoje apoiado por 16 Estados Membros (Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Irlanda, Itália, Países Baixos, Polónia, Portugal, Reino Unido, República Checa, Suécia e Suíça), para além do Chile, o país de acolhimento, e da Austrália como Parceiro Estratégico. A Sede do ESO e o seu centro de visitantes e planetário, o Supernova do ESO, situam-se perto de Munique, na Alemanha, enquanto o deserto chileno do Atacama, um lugar extraordinário com condições únicas para a observação dos céus, acolhe os nossos telescópios. O ESO mantém em funcionamento três observatórios: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera o Very Large Telescope e o Interferómetro do Very Large Telescope, assim como telescópios de rastreio, tal como o VISTA. Ainda no Paranal, o ESO acolherá e operará o Cherenkov Telescope Array South, o maior e mais sensível observatório de raios gama do mundo. Juntamente com parceiros internacionais, o ESO opera o APEX e o ALMA no Chajnantor, duas infraestruturas que observam o céu no domínio do milímetro e do submilímetro. No Cerro Armazones, próximo do Paranal, estamos a construir “o maior olho do mundo voltado para o céu” — o Extremely Large Telescope do ESO. Dos nossos gabinetes em Santiago do Chile, apoiamos as nossas operações no país e trabalhamos com parceiros chilenos e com a sociedade chilena.

O Atacama Large Millimeter/submillimeter Array (ALMA), uma infraestrutura astronómica internacional, surge no âmbito de uma parceria entre o ESO, a Fundação Nacional de Ciências dos Estados Unidos (NSF) e os Institutos Nacionais de Ciências da Natureza (NINS) do Japão, em cooperação com a República do Chile. O ALMA é financiado pelo ESO em prol dos seus Estados Membros, pela NSF em cooperação com o Conselho de Investigação Nacional do Canadá (NRC) e o Conselho Nacional de Ciência e Tecnologia da Taiwan e pelo NINS em cooperação com a Academia Sinica (AS) da Taiwan e o Instituto de Astronomia e Ciências do Espaço da Coreia (KASI). A construção e operação do ALMA é coordenada pelo ESO, em prol dos seus Estados Membros; pelo Observatório Nacional de Rádio Astronomia dos Estados Unidos (NRAO), que é gerido pela Associação de Universidades, Inc. (AUI), em prol da América do Norte; e pelo Observatório Astronómico Nacional do Japão (NAOJ), em prol do Leste Asiático. O Observatório Conjunto ALMA (JAO) fornece uma liderança e gestão unificadas na construção, comissionamento e operação do ALMA.

A Universidade de Hertfordshire leva o impacto transformador do ensino superior a todos. Os seus estudantes, pessoal e empresas atingem sempre o seu potencial máximo. Através de um ensino de alta qualidade, 550 programas de licenciatura, projectos de investigação de ponta e parcerias empresariais poderosas, estas pessoas pensam mais alto, destacam-se e têm um impacto positivo nas comunidades locais, nacionais e internacionais.

Links

Contactos

James Geach
Centre for Astrophysics Research, University of Hertfordshire
Hatfield, UK
Email: j.geach@herts.ac.uk

Enrique Lopez Rodriguez
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University
Stanford, California, USA
Email: elopezrodriguez@stanford.edu

Rob Ivison
European Southern Observatory (ESO), Germany; Macquarie University, Australia; Dublin Institute for Advanced Studies, Ireland; University of Edinburgh, Scotland; ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions, Australia
Email: Rob.Ivison@eso.org

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel.: +49 89 3200 6670
Telm.: +49 151 241 664 00
Email: press@eso.org

Press Office
University of Hertfordshire
Hatfield, UK
Tel.: +441707 285770
Email: news@herts.ac.uk

Margarida Serote (press contact Portugal)
ESO Science Outreach Network and Instituto de Astrofísica e Ciências do Espaço,
Tel.: +351 964951692
Email: eson-portugal@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso2316, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contacto local com os meios de comunicação social, em ligação com os desenvolvimentos do ESO. A representante do nodo português é Margarida Serote.

Sobre a Nota de Imprensa

Nº da Notícia:eso2316pt
Nome:9io9
Tipo:Early Universe : Galaxy
Facility:Atacama Large Millimeter/submillimeter Array
Science data:2023Natur.621..483G

Imagens

Imagem ALMA da galáxia 9io9
Imagem ALMA da galáxia 9io9
Uma imagem infravermelha da galáxia 9io9
Uma imagem infravermelha da galáxia 9io9

Vídeos

O campo magnético galáctico mais distante observado até à data (ESOcast 267 Light)
O campo magnético galáctico mais distante observado até à data (ESOcast 267 Light)
Aproximação à galáxia 9io9
Aproximação à galáxia 9io9