Press Release

Comet Hyakutake to Approach the Earth in Late March 1996

Astronomers Prepare for a Rare Event

16 February 1996

In the early morning of January 31, 1996, Japanese amateur astronomer Yuji Hyakutake made his second comet discovery within five weeks. He found the new comet near the border between the southern constellations of Hydra (The Water-Snake) and Libra (The Scales), amazingly just three degrees from the position where he detected another comet on December 26, 1995.

After two weeks of hectic activity among amateur and professional astronomers all over the world, much interesting information has now been gathered about the new comet which has been designated C/1996 B2 (Hyakutake). In particular, it has been found to move in a near-parabolic orbit that will bring it unusually close to the Earth next month. It is then expected to become bright enough to be seen with the unaided eye and to remain so during several weeks thereafter.

Preparations are now made to observe the celestial visitor with a large number of telescopes, on the ground and in space. This event offers a rare opportunity to study the immediate surroundings of a cometary nucleus in detail and the specialists intend to make the most of it.

Discovery and orbit

Yuji Hyakutake, of profession photoengraver and a well-known amateur astronomer, announced his new discovery without delay, and within 24 hours, it had been sighted by several other observers in Japan and Australia. Experienced comet-watchers described its appearance as `diffuse with central condensation and of magnitude 11-12', i.e. a little more than 100 times fainter than what can be seen with the unaided eye.

This brightness is not unusual for a comet discovered by an amateur, although it would probably have been missed, had it been just a little fainter. In the present case, the decisive factors for Hyakutake's success were undoubtedly his very powerful equipment (25 x 150 binoculars) and the advantageous combination of the comet's southern position in the sky and his location in Kagoshima, the southernmost prefecture of Japan.

Within three days only, nearly 120 positional measurements of the comet were obtained, mostly by amateur observers in Australia, PR China, Czechia, France, Japan, Spain and the U.S.A. This allowed Brian Marsden of the Central Bureau for Astronomical Telegrams of the International Astronomical Union (Cambridge, Mass., U.S.A.) to compute a preliminary orbit. It showed that the comet moves along a parabola - or at least an extremely elongated ellipse - and that it must therefore have come from far away and may never have been near the Sun before. At the time of discovery, the comet was about 280 million km from the Earth and outside the orbit of Mars.

Moreover, the motion of the comet is such that it will continue to approach the Earth with a speed of about 58 km/sec during the next weeks and will pass within 15 million kilometres of our planet in late March. This corresponds to one tenth of the distance between the Earth and the Sun (0.1 AU) and, in cosmical terms, the passage is therefore a very close one. Information about some earlier comet encounters may be found in the Appendix at the end of this Press Release.

Continued observations have confirmed this and have also allowed to fix the moment of closest passage as Monday, March 25, at about 7h UT. At that time, the comet will be moving northwards through the northern constellation of Draco (The Dragon) at the exceptional rate of 0.77 deg/hour. The event will be best observable from the northern hemisphere. Two days later, the comet passes within a few degrees of the northern celestial pole.

The perihelion (the orbital point closest to the Sun) is reached on May 1, 1996, at a distance of 35 million kilometres from the Sun, far inside the orbit of the innermost planet, Mercury. From then on, the comet will rapidly move south, crossing the celestial equator in mid-May and reaching 70 degrees south in late July.

Recent observations

Comet Hyakutake obviously comes from far away, maybe even from the very distant `Oort Cloud' of comets that surrounds the solar system. In this sense it is different from the periodical comets which move in closed orbits around the Sun with revolution periods between a few years and some decades. Its `dirty snowball' nucleus of ices and dust has therefore not been heated by the Sun for a very long time, perhaps never, if this is its first visit to the inner regions of the solar system. Hence it is particularly difficult to predict its future performance. Nevertheless, the available observations seem to indicate that it is a quite `active' comet and that it may therefore become comparatively bright when it approaches the Earth and later at perihelion. But how bright ?

Imaging as well as spectroscopic observations have been performed in order to better characterize Comet Hyakutake. On CCD-frames obtained of the comet in early February with telescopes at the ESO La Silla Observatory and elsewhere, an elongation is clearly visible (cf. eso9611a) in the anti-sunward direction of the coma (the cloud of gas and dust that surrounds the cometary nucleus). A real tail has not yet developed, but this is expected to happen soon. The size of the coma was measured as at least 7 arcmin, corresponding to a projected diameter of nearly 500,000 kilometres.

It is also of interest that until recently the coma otherwise appeared absolutely symmetrical - there was no indication of `jets', i.e. no large vents on the surface of the nucleus had yet become active. However, on images obtained with the ESO 3.6-metre telescope in the morning of February 13, a `jet'-like feature is seen which emerges south-east of the nucleus (i.e. from the sunlit side) and curls counter-clockwise towards the opposite side (the `tail'-direction). This is probably the first evidence of localized dust production on the surface of the nucleus.

CCD observations were made on February 9 at the Lowell Observatory (Flagstaff, U.S.A.) through special optical filters which isolate the light from different components of the coma, e.g. the light emitted by the OH-, C2- and CN-molecules in gaseous form and also the reflected sunlight from the dust grains. They show that the gas production rates are almost as high as those measured at famous Comet Halley when it was at about the same distance from the Sun during its approach in late 1985. The dust production of Comet Hyakutake also seems to be quite impressive.

The first spectra of the new comet were obtained at La Silla with the Boller and Chivens spectrograph at the ESO 1.52-metre telescope on February 8; they show comparatively strong emission of CN, C2 and C3 molecules, cf. eso9612a. This is not unusual for a comet at the corresponding heliocentric distance. In conclusion, the recent observations show Comet Hyakutake to be an `active' comet. The evaporation of the ices on the surface of its nucleus, due to the heating of the Sun, is well underway and much dust is being ejected during this process. It is quite likely that this comet will put on a fine display, starting in mid-March and lasting until soon after the perihelion passage in early May. Nevertheless, there have been some cases [1] in recent times when the activity level of new comets did not develop as expected, so some caution is necessary.

The encounter on March 25

By a straightforward extrapolation of the current brightness, it would appear that Comet Hyakutake will reach magnitude 1 on March 25, 1996, at the time of the closest approach to the Earth. This is almost as bright as the brightest stars in the sky. However, it is important to consider that this is the `integrated' brightness of the entire comet head which may fill an area of several degrees in diameter in the sky. Thus the comet will appear as a moderately bright, very diffuse object that is best visible in binoculars. There will be a central point of enhanced brightness, corresponding to the innermost part of the coma around the nucleus. The motion is sufficiently fast to be easily perceptible on the stellar background.

We do not know the size of the nucleus yet, but assuming - optimistically, from the measured gas and dust production - that the diameter is 10 kilometres, i.e. about as large as that of Comet Halley, then the magnitude of the nucleus alone should be about 11 at the time of the closest encounter. It may therefore be well visible in even small telescopes, as a bright point near the centre of the diffuse coma. However, it will most probably not be possible to obtain resolved images of the nucleus with ground-based telescopes; even if the size turns out to be this large, the nucleus will only subtend an angle of about 0.15 arcsec and thus appear point-like.

The comet's extremely rapid motion across the sky at the encounter will constitute a major technical-observational problem for most telescopes. Moreover, it cannot be excluded that the coma is so dense that the nucleus will be completely hidden from view. The only telescope which could possibly image the nucleus as an extended object is the Hubble Space Telescope, for which observations are now being planned.

Still, there is no doubt that the upcoming event offers very bright prospects for the investigation of the near-nucleus environment of a comet. Another technique which will most likely be attempted is that of radar soundings; the return time for a signal will only be 100 seconds. In the past, only a handful of comets have been investigated in this way and none in great detail. However, in view of the recent, great technological advances in this field, it should in principle be possible to `image' the nucleus of Comet Hyakutake with some of the largest radio telescopes. Predictions for the appearance of the tail(s) at the encounter are still very uncertain, since their development has not yet started. In the best case, the dust tail may become quite impressive and reach a length of many degrees, and the expected ion tail could also be quite long.

The perihel passage

The brightness at perihel on May 1 will probably exceed that at the Earth encounter and Comet Hyakutake could then become a very spectacular object. How bright it will actually be is much dependent on the amount of dust released from the nucleus as it approaches the Sun. Unfortunately, the viewing conditions will not be very good and the full moon on May 3 will also adversely influence the sight.

Notes

[1] Prominent examples are Comet Kohoutek in 1973 and Comet Austin in 1990.

[2] 1 Astronomical Unit (AU) = 149.6 million kilometres (the mean distance between the Earth and the Sun).

More information

Appendix: Comet encounters with the Earth

There is no doubt that the close encounter with C/1996 B2 (Hyakutake) is a relatively rare event. According to Brian Marsden (Central Bureau for Astronomical Telegrams of the International Astronomical Union, Cambridge, Mass., U.S.A.): The approach of C/1996 B2 to the Earth on March 25 (0.10 AU) [2] is the closest for any comet since 1983 (when there were two comets coming to 0.06 AU and 0.03 AU within a month of each other), and it is the fifth closest approach of any comet during the past century. What is unique about this comet is that no other comet is known then to have gone on to pass anything like as close to the Sun as this one does (0.23 AU on May 1). One of the 1983 comets had about twice this comet's perihelion distance, but the approach to the Earth was well after perihelion. There was possibly a comet with a perihelion distance comparable to this one that came closer to the Earth after perihelion in the year 400, but that is very uncertain. The time interval between passage near the Earth and subsequent passage near the Sun is longer for C/1996 B2 (37 days) than for any closer Earth approach since that of the famous Lexell comet in 1770 (43 days), that comet holding the record confirmed approach to the Earth (0.015 AU or 2.2 million kilometres). C/1996 B2 is intrinsically the brightest Earth-approacher since the early eighteenth century, and the 55 days between discovery and Earth approach is a record for a pre-perihelic Earth approach.

More information about other close encounters and collisions of comets with the Earth may be found in an article by Zdenek Sekanina and Don Yeomans (Jet Propulsion Laboratory, CALTECH, Pasadena, U.S.A.) which appeared in 1984 in the American journal The Astronomical Journal, Volume 89, page 154.

Connect with ESO on social media

About the Release

Release No.:eso9613
Legacy ID:PR 06/96
Name:C/1996 B2, Comet Hyakutake
Type: Solar System
Solar System : Interplanetary Body : Comet
Facility:Other

Images