Press Release

ALMA Rewrites History of Universe's Stellar Baby Boom

Record-breaking haul of distant galaxies includes most distant detection of water published to date

13 March 2013

Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) show that the most vigorous bursts of star birth in the cosmos took place much earlier than previously thought. The results are published in a set of papers to appear in the journal Nature on 14 March 2013, and in the Astrophysical Journal. The research is the most recent example of the discoveries coming from the new international ALMA observatory, which celebrates its inauguration today.

The most intense bursts of star birth are thought to have occurred in the early Universe, in massive, bright galaxies. These starburst galaxies convert vast reservoirs of cosmic gas and dust into new stars at a furious pace — many hundreds of times faster than in stately spiral galaxies like our own galaxy, the Milky Way. By looking far into space, at galaxies so distant that their light has taken many billions of years to reach us, astronomers can observe this busy period in the Universe’s youth.

The more distant the galaxy, the further back in time one is looking, so by measuring their distances we can piece together a timeline of how vigorously the Universe was making new stars at different stages of its 13.7 billion year history,” said Joaquin Vieira (California Institute of Technology, USA), who led the team and is lead author of the paper in the journal Nature.

The international team of researchers first discovered these distant and enigmatic starburst galaxies with the US National Science Foundation’s 10-metre South Pole Telescope (SPT) and then used ALMA to zoom in on them to explore the stellar baby boom in the young Universe. They were surprised to find that many of these distant dusty star-forming galaxies are even further away than expected. This means that, on average, their bursts of star birth took place 12 billion years ago, when the Universe was just under 2 billion years old — a full billion years earlier than previously thought.

Two of these galaxies are the most distant of their kind ever seen — so distant that their light began its journey when the Universe was only one billion years old. What’s more, in one of these record-breakers, water is among the molecules detected, marking the most distant observations of water in the cosmos published to date.

The team used the unrivalled sensitivity of ALMA to capture light from 26 of these galaxies at wavelengths of around three millimetres. Light at certain specific wavelengths can be produced by gas molecules in these galaxies, and the wavelengths are stretched by the expansion of the Universe over the billions of years that it takes the light to reach us. By measuring the stretched wavelengths, astronomers can calculate how long the light’s journey has taken, and place each galaxy at the right point in cosmic history.

ALMA’s sensitivity and wide wavelength range mean we could make our measurements in just a few minutes per galaxy — about one hundred times faster than before,” said Axel Weiss (Max-Planck-Institut für Radioastronomie in Bonn, Germany), who led the work to measure the distances to the galaxies. “Previously, a measurement like this would have been a laborious process of combining data from both visible-light and radio telescopes.”

In the majority of cases, the ALMA observations alone could pinpoint the distances, but for a few galaxies the team combined the ALMA data with measurements from other telescopes, including the Atacama Pathfinder Experiment (APEX) and ESO’s Very Large Telescope [1].

The astronomers were using only a partial array of 16 of ALMA’s full complement of 66 giant antennas, as the observatory was still under construction at an altitude of 5000 metres on the remote Chajnantor Plateau in the Chilean Andes. When complete, ALMA will be even more sensitive, and will be able to detect even fainter galaxies. For now, astronomers targeted the brighter ones. They took advantage of a helping hand from nature, too: using gravitational lensing, an effect predicted by Einstein’s general theory of relativity, where light from a distant galaxy is distorted by the gravitational influence of a nearer foreground galaxy, which acts like a lens and makes the distant source appear brighter.

To understand by precisely how much this gravitational lensing brightened the view of the galaxies, the team made sharper images of them using more ALMA observations at wavelengths of around 0.9 millimetres.

"These beautiful pictures from ALMA show the background galaxies warped into multiple arcs of light known as Einstein rings, which encircle the foreground galaxies," said Yashar Hezaveh (McGill University, Montreal, Canada), who led the study of the gravitational lensing. “We are using the massive amounts of dark matter surrounding galaxies half-way across the Universe as cosmic telescopes to make even more distant galaxies appear bigger and brighter.

Analysis of the distortion reveals that some of the distant star-forming galaxies are as bright as 40 trillion (40 million million) Suns, and that gravitational lensing has magnified this by up to 22 times.

Only a few gravitationally lensed galaxies have been found before at these submillimetre wavelengths, but now SPT and ALMA have uncovered dozens of them.”  said Carlos De Breuck (ESO), a member of the team. “This kind of science was previously done mostly at visible-light wavelengths with the Hubble Space Telescope, but our results show that ALMA is a very powerful new player in the field.

"This is an great example of astronomers from around the world collaborating to make an amazing discovery with a state-of-the-art facility," said team member Daniel Marrone (University of Arizona, USA). "This is just the beginning for ALMA and for the study of these starburst galaxies. Our next step is to study these objects in greater detail and figure out exactly how and why they are forming stars at such prodigious rates."

Notes

[1] The additional observations were made by APEX, the VLT, the Australia Telescope Compact Array (ATCA) and the Submillimeter Array (SMA).

More information

The research is described in the paper “Dusty starburst galaxies in the early Universe as revealed by gravitational lensing”, by J. Vieira et al., in the journal Nature. The work to measure the distances to the galaxies is described in the paper “ALMA redshifts of millimeter-selected galaxies from the SPT survey: The redshift distribution of dusty star-forming galaxies”, by A. Weiss et al., in the Astrophysical Journal. The study of the gravitational lensing is described in the paper “ALMA observations of strongly lensed dusty star-forming galaxies”, by Y. Hezaveh et al., also in the Astrophysical Journal.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Axel Weiss
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 273
Email: aweiss@mpifr-bonn.mpg.de

Joaquin Vieira
California Institute of Technology
USA
Cell: +1 949 887 5795
Email: vieira@caltech.edu

Yashar Hezaveh
McGill University
Montréal, Canada
Tel: +1 514 398 7032
Email: yasharh@physics.mcgill.ca

Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Douglas Pierce-Price
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6759
Email: dpiercep@eso.org

Carlos de Breuck
ESO
Garching bei München, Germany
Tel: +49 89 3200 6613
Email: cdebreuc@eso.org

Charles E. Blue
National Radio Astronomy Observatory, Public Information Officer
Charlottesville, USA
Tel: +1 434 296 0314
Email: cblue@nrao.edu

Connect with ESO on social media

About the Release

Release No.:eso1313
Name:Galaxies
Type:Early Universe : Galaxy : Activity : Starburst
Facility:Atacama Large Millimeter/submillimeter Array, Hubble Space Telescope, South Pole Telescope
Science data:2013Natur.495..344V
2013ApJ...767...88W
2013ApJ...767..132H

Images

ALMA images of gravitationally-lensed distant star-forming galaxies
ALMA images of gravitationally-lensed distant star-forming galaxies
Gravitational lensing of distant star-forming galaxies (schematic)
Gravitational lensing of distant star-forming galaxies (schematic)

Videos

Gravitational lensing of distant star-forming galaxies (schematic)
Gravitational lensing of distant star-forming galaxies (schematic)

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.