Press Release
Planet Population is Plentiful
Planets around stars are the rule rather than the exception
11 January 2012
An international team, including three astronomers from the European Southern Observatory (ESO), has used the technique of gravitational microlensing to measure how common planets are in the Milky Way. After a six-year search that surveyed millions of stars, the team concludes that planets around stars are the rule rather than the exception. The results will appear in the journal Nature on 12 January 2012.
Over the past 16 years, astronomers have detected more than 700 confirmed exoplanets [1] and have started to probe the spectra (eso1002) and atmospheres (eso1047) of these worlds. While studying the properties of individual exoplanets is undeniably valuable, a much more basic question remains: how commonplace are planets in the Milky Way?
Most currently known exoplanets were found either by detecting the effect of the gravitational pull of the planet on its host star or by catching the planet as it passes in front of its star and slightly dims it. Both of these techniques are much more sensitive to planets that are either massive or close to their stars, or both, and many planets will be missed.
An international team of astronomers has searched for exoplanets using a totally different method — gravitational microlensing — that can detect planets over a wide range of mass and those that lie much further from their stars.
Arnaud Cassan (Institut dʼAstrophysique de Paris), lead author of the Nature paper, explains: "We have searched for evidence for exoplanets in six years of microlensing observations. Remarkably, these data show that planets are more common than stars in our galaxy. We also found that lighter planets, such as super-Earths or cool Neptunes, must be more common than heavier ones."
The astronomers used observations, supplied by the PLANET [2] and OGLE [3] teams, in which exoplanets are detected by the way that the gravitational field of their host stars, combined with that of possible planets, acts like a lens, magnifying the light of a background star. If the star that acts as a lens has a planet in orbit around it, the planet can make a detectable contribution to the brightening effect on the background star.
Jean-Philippe Beaulieu (Institut d'Astrophysique de Paris), leader of the PLANET collaboration adds: "The PLANET collaboration was established to follow up promising microlensing events with a round-the-world network of telescopes located in the southern hemisphere, from Australia and South Africa to Chile. ESO telescopes contributed greatly to these surveys.”
Microlensing is a very powerful tool, with the potential to detect exoplanets that could never be found any other way. But a very rare chance alignment of a background and lensing star is required for a microlensing event to be seen at all. And, to spot a planet during an event, an additional chance alignment of the planet’s orbit is also needed.
Although for these reasons finding a planet by microlensing is far from an easy task, in the six year's worth of microlensing data used in the analysis, three exoplanets were actually detected in the PLANET and OGLE searches: a super-Earth [4], and planets with masses comparable to Neptune and Jupiter. By microlensing standards, this is an impressive haul. In detecting three planets, either the astronomers were incredibly lucky and had hit the jackpot despite huge odds against them, or planets are so abundant in the Milky Way that it was almost inevitable [5].
The astronomers then combined information about the three positive exoplanet detections with seven additional detections from earlier work, as well as the huge numbers of non-detections in the six year's worth of data — non-detections are just as important for the statistical analysis and are much more numerous. The conclusion was that one in six of the stars studied hosts a planet of similar mass to Jupiter, half have Neptune-mass planets and two thirds have super-Earths. The survey was sensitive to planets between 75 million kilometres and 1.5 billion kilometres from their stars (in the Solar System this range would include all the planets from Venus to Saturn) and with masses ranging from five times the Earth up to ten times Jupiter.
Combining the results suggests strongly that the average number of planets around a star is greater than one. They are the rule rather than the exception.
“We used to think that the Earth might be unique in our galaxy. But now it seems that there are literally billions of planets with masses similar to Earth orbiting stars in the Milky Way,” concludes Daniel Kubas, co-lead author of the paper.
Notes
[1] The Kepler mission is discovering huge numbers of “candidate exoplanets” that are not included in this number.
[2] Probing Lensing Anomalies NETwork. More than half of the data from the PLANET survey used in this study come from the Danish 1.54-metre telescope at ESO's La Silla Observatory.
[3] Optical Gravitational Lensing Experiment.
[4] A super-Earth has a mass between two and ten times that of the Earth. So far 12 microlensing planets have been published in total, using various observational strategies.
[5] The astronomers surveyed millions of stars looking for microlensing events. Only 3247 such events in 2002-2007 were spotted as the precise alignment needed is very unlikely. Statistical results were inferred from detections and non-detections on a representative subset of 440 light curves.
More information
This research was presented in a paper, “One or more bound planets per Milky Way star from microlensing observations”, by A. Cassan et al., to appear in the 12 January issue of the journal Nature.
The team is composed of A. Cassan (Institut dʼAstrophysique de Paris, France [IAP]; ESO), D. Kubas (IAP), J.-P. Beaulieu (IAP), M. Dominik (University of St Andrews, United Kingdom), K. Horne (University of St Andrews), J. Greenhill (University of Tasmania, Australia), J. Wambsganss (Heidelberg University, Germany), J. Menzies (South African Astronomical Observatory), A. Williams (Perth Observatory, Australia), U. G. Jørgensen (Niels Bohr Institute, Copenhagen, Denmark), A. Udalski (Warsaw University Observatory, Poland), M. D. Albrow (University of Canterbury, New Zealand), D. P. Bennett (University of Notre Dame, Notre Dame, USA), V. Batista (IAP), S. Brillant (ESO), J. A. R. Caldwell (McDonald Observatory, Fort Davis, USA), A. Cole (University of Tasmania), Ch. Coutures (IAP), K. Cook (Lawrence Livermore National Laboratory, USA), S. Dieters (University of Tasmania), D. Dominis Prester (University of Rijeka, Croatia), J. Donatowicz (Technical University of Vienna, Austria), P. Fouqué (Université de Toulouse, France), K. Hill (University of Tasmania), N. Kains (ESO), S. Kane (NASA Exoplanet Science Institute, Caltech, USA), J.-B. Marquette (IAP), K. R. Pollard (University of Canterbury, New Zealand), K. C. Sahu (STScI, Baltimore, USA), C. Vinter (Niels Bohr Institute), D. Warren (University of Tasmania), B. Watson (University of Tasmania), M. Zub (Heidelberg University), T. Sumi (Nagoya University, Japan), M. K. Szymański (Warsaw University Observatory), M. Kubiak (Warsaw University Observatory), R. Poleski (Warsaw University Observatory), I. Soszynski (Warsaw University Observatory), K. Ulaczyk (Warsaw University Observatory), G. Pietrzyński (Warsaw University Observatory), Ł. Wyrzykowski (Warsaw University Observatory).
The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.
Links
- Research paper in Nature
- Press release at STScI, Baltimore
- Press release at the Niels Bohr Institute, Copenhagen
Contacts
Arnaud Cassan
Institut d'Astrophysique de Paris
Université Pierre et Marie Curie, Paris, France
Tel: +33 1 44 32 80 00
Email: cassan@iap.fr
Daniel Kubas
c/o European Southern Observatory
Email: dkubas@eso.org
Richard Hook
ESO, La Silla, Paranal, E-ELT & Survey Telescopes Press Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org
About the Release
Release No.: | eso1204 |
Name: | Exoplanets, Gravitational Microlensing, Milky Way |
Type: | Milky Way : Cosmology : Phenomenon : Lensing |
Facility: | Danish 1.54-metre telescope, MPG/ESO 2.2-metre telescope, Very Large Telescope |
Instruments: | NACO, WFI |
Science data: | 2012Natur.481..167C |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.