Press Release
A Molecular Thermometer for the Distant Universe
First accurate measurement of the temperature of the cosmic background at an early epoch
13 May 2008
Astronomers have made use of ESO's Very Large Telescope to detect for the first time in the ultraviolet the carbon monoxide molecule in a galaxy located almost 11 billion light-years away, a feat that had remained elusive for 25 years. This detection allows them to obtain the most precise measurement of the cosmic temperature at such a remote epoch.
The team of astronomers [1] aimed the UVES spectrograph on ESO's VLT for more than 8 hours at a well-hidden galaxy whose light has taken almost 11 billion years to reach us, that is about 80% of the age of the Universe.
The only way this galaxy can be seen is through the imprint its interstellar gas leaves on the spectrum of an even more remote quasar [2]. "Quasars are here only used as a beacon in the very distant Universe. Interstellar clouds of gas in galaxies, located between the quasars and us on the same line of sight, absorb parts of the light emitted by the quasars. The resulting spectrum consequently presents dark 'valleys' that can be attributed to well-known elements and possibly molecules," explains Raghunathan Srianand (Pune, India), who led the team making the observations.
Thanks to the power of the VLT and a very careful selection of the target - the target was selected among about ten thousands quasars - the team was able to discover the presence of normal and deuterated molecular hydrogen (H2, HD) and carbon monoxide (CO) molecules in the interstellar medium of this remote galaxy. "This is the first time that these three molecules have been detected in absorption in front of a quasar, a detection that has remained elusive for more than a quarter century," says Cédric Ledoux (ESO), member of the team.
The same team had already broken the record for the most distant detection of molecular hydrogen in a galaxy that we see as it was when the Universe was less than 1.5 billion years old.
The interstellar gas is the reservoir from which stars form and, as such, is an important component of galaxies. Furthermore, because the formation and the state of molecules are very sensitive to the physical conditions of the gas, which in turn depend on the rate at which stars are formed, the detailed study of the chemistry of the interstellar medium is an important tool to understand how galaxies form
Based on their observations, the astronomers showed that the physical conditions prevailing in the interstellar gas in this remote galaxy are similar to what is seen in our Galaxy, the Milky Way.
But most importantly, the team was able to measure with the best ever precision the temperature of the cosmic background radiation in the remote Universe [3]. "Unlike other methods, measuring the temperature of the cosmic background using the CO molecule involves very few assumptions," declares co-author Pasquier Noterdaeme.
If the Universe was formed in a 'Big Bang', as most astrophysicists infer, the glow of this primeval fireball should have been warmer in the past. This is exactly what is found by the new measurements. "Given the current measured temperature of 2.725 K, one would expect that the temperature 11 billion years ago was about 9.3 K," says co-author Patrick Petitjean. "Our unique set of VLT observations allows us to deduce a temperature of 9.15 K, plus or minus 0.7 K, in excellent agreement with the theory."
"We believe our analysis pioneers interstellar chemistry studies at high redshift and demonstrates that it is possible, together with the detection of other molecules such as HD or CH, to use interstellar chemistry to tackle important cosmological issues," adds Srianand.
The results described here have been presented in a Letter to the Editor in Astronomy and Astrophysics ("First detection of CO in a high-redshift damped Lyman-alpha system", by R. Srianand et al.).
Notes
[1]: The team is composed of Raghunathan Srianand (IUCAA, Pune, India), Pasquier Noterdaeme and Cédric Ledoux (ESO), and Patrick Petitjean (IAP, France). The same team already made the first measurement of the temperature of the cosmic microwave background radiation, at a time when the Universe was only about 2.5 billion years old, also using UVES on the VLT (see ESO 27/00). At that time, they could only measure a temperature in the range between 6 and 14 K.
[2]: Quasars are extraordinarily luminous objects in the distant Universe, thought to be powered by supermassive black holes at the heart of galaxies. A single quasar could be a thousand times brighter than an entire galaxy of a hundred billion stars, and yet this remarkable amount of energy originates from a volume smaller than our Solar System.
[3]: One of the fundamental predictions of the Hot Big Bang theory for the creation of the Universe is the existence of the Cosmic Microwave Background Radiation (CMBR). This relic radiation of the primeval fireball was discovered in 1964 by means of radio observations by American physicists Arno A. Penzias and Robert W. Wilson, who were rewarded with the Nobel Prize in 1978. Precision measurements by the COBE and WMAP satellites later showed that this ancient radiation fills the Universe, with a present-day temperature of slightly less than 3 degrees above absolute zero (2.725 Kelvin, or -270.4 degree Celsius). A particular prediction of the Big Bang theory is that the Universe cools when expanding, the temperature scaling with the dilution factor of the Universe (1 + redshift). At the redshift of the galaxy (2.41837), one would thus expect a temperature of 2.725 x (1 + 2.41837) = 9.315 K or -263.835 degree Celsius.
Contacts
Cédric Ledoux
ESO
Chile
Tel: +56 2 463 30 56
Email: cledoux@eso.org
Pasquier Noterdaeme
ESO
Chile
Tel: +56 55 43 53 11
Email: pnoterda@eso.org
Patrick Petitjean
Institut d'Astrophysique de Paris, France
Paris, France
Tel: +33 1 44 32 81 50
Email: petitjean@iap.fr
Raghunathan Srianand
Inter University Centre for Astronomy and Astrophysics
Pune, India
Tel: +91 20 569 1414 (ext 320)
Email: anand@iucaa.ernet.in
About the Release
Release No.: | eso0813 |
Legacy ID: | PR 13/08 |
Name: | Spectrum |
Type: | Unspecified : Nebula : Type : Interstellar Medium Unspecified : Galaxy |
Facility: | Very Large Telescope |
Instruments: | UVES |
Science data: | 2008A&A...482L..39S |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.