Press Release
Missing Black Holes Driven Out
Astrophysical Virtual Observatory Proves To Be Essential Tool.
28 May 2004
Astronomers discover an entire population of obscured, powerful supermassive black holes. This unprecedented result, achieved through combination of information from multiple wavelengths, coming from different telescopes in the world, has been possible thanks to the Astrophysical Virtual Observatory project.
Active galaxies
Active galaxies are breathtaking objects. Their compact nuclei (AGN = Active Galaxy Nuclei) are so luminous that they can outshine the entire galaxy; "quasars" constitute extreme cases of this phenomenon, their powerful engine making them visible over a very large fraction of the observable Universe.
It is now widely accepted that the ultimate power station of these activities originates in supermassive black holes with masses up to thousands of millions times the mass of our Sun. For comparison, the one in the Milky Way galaxy has only about 3 million solar masses. The central black hole is believed to be fed from a tightly wound accretion disc of gas and dust encircling it, in a donuts-shaped torus. Material that falls towards these gigantic "vacuum cleaners" will be compressed and heated up to enormous temperatures. This hot gas radiates an incredible amount of light, causing the active galaxy nucleus to shine so brightly.
Because of this obscuring dust torus, the aspect of the AGN or the quasar may greatly vary. Sometimes, astronomers can look along the axis of the dust torus from above or from below and thus have a clear view of the black hole. Such objects are called "Type-1 sources". "Type-2 sources", however, are oriented such that the dust torus is seen edge-on from Earth, and our view of the black hole is therefore totally blocked by the dust over a large range of wavelengths from the near-infrared to soft X-rays.
Type-2 quasars - where are they?
While many examples of rather close-by Type-2 AGNs are known (so-called Seyfert 2 galaxies), it is still a matter of debate whether their larger luminosity quasar counterparts exist. Until very recently, very few examples of this class were known. One of them is the Type-2 Quasar CXOCDFS J033229.9-275106, discovered by combining observations taken in X-rays with spectra obtained by the Very Large Telescope.
It is indeed a difficult task to find them. Because of the obscuring effect of dust, they cannot be found through standard (i.e. in the visible) methods of quasar selection. The only way to hope to drive them out of their bushes is to detect them through their hard X-rays which are able to penetrate through the torus. But this requires that astronomers can analyse and cross-correlate in a very efficient way the observations from several space- and ground-based observatories, which together span the entire range of wavelengths. Type-2 quasars can indeed be identified as the only objects appearing very red and at the same time emitting strongly in X-rays.
Virtual Observatories
This is where Virtual Observatories can play a decisive role. Major breakthroughs in telescope, detector, and computer technology now allow astronomical surveys to produce massive amounts of images, spectra, and catalogues. These datasets cover the sky at all wavelengths from gamma- and X-rays, optical, infrared, to radio waves. Virtual Observatories are an international, community-based initiative, to allow global electronic access to available astronomical data in a seamless and transparent way.
The Astrophysical Virtual Observatory project (AVO) ([1]) is the effort in Virtual Observatories of the European astronomical community. Funded jointly by the European Commission and six participating European organisations, it is led by the European Southern Observatory (ESO).
The AVO science team headed by Paolo Padovani (ST-ECF/ESO) was able to use the first prototype of the AVO to provide unprecedented results on the existence of Type-2 quasars by discovering an entire population of obscured, powerful supermassive black holes. For this, they specifically scrutinised the so-called GOODS fields [2], i.e., the Hubble Deep Field-North and the Chandra Deep Field-South. These GOODS fields include some of the deepest observations from space- and ground-based facilities ever made and are the most data-rich deep survey areas in the sky.
Combining data from many telescopes
Padovani and the team used the Astrophysical Virtual Observatory to combine information from multiple wavelengths, originating from ESO's Very Large Telescope (VLT), the Hubble Space Telescope (HST) and the Chandra X-ray satellite. This allowed them to discover 66 Type-2 AGN candidates in the GOODS fields, among which 30 qualify as optically obscured quasars, i.e. Type-2 quasars. Only 9 objects of this type were previously known to exist in the GOODS fields, so this result effectively quadruples the known population of Type-2 quasars. From this, the astronomers can infer the total number of Type-2 quasars and their associated black holes.
According to Paolo Padovani: "This discovery means that surveys of powerful supermassive black holes have so far underestimated their numbers by at least a factor of two, and possibly by up to a factor of five."
The newly discovered type-2 AGNs have a mean redshift [3] close to 3. The new Type-2 quasars are even further, with a mean redshift of 3.7. Thus, they are seen as when the Universe was only 1,600 million years old.
"These discoveries highlight the kind of scientific impact that Virtual Observatory technologies and standards will have on astronomy world-wide", says Peter Quinn (ESO), Director of the AVO. "The Astrophysical Virtual Observatory wants to continue to work with astronomers in Europe to enable more discoveries like this, using combined data from ground- and space-based observatories".
Notes
[1]: The AVO science team behind this discovery acted on priorities set by the community Science Working Group. The team is led by Paolo Padovani (ST-ECF/ESO) and comprises the scientific leads of the AVO partner projects, Mark Allen, AVO Project Scientist at the Centre de Données Stellaires (Strasbourg, France), Nicholas Walton, Project Scientist of AstroGrid (PPARC, UK), and Piero Rosati (ESO) of the GOODS and CDF-S science team. The European Commission has recognised the fundamental importance of applying advanced new computational and information discovery techniques in enabling and speeding the astrophysical research process. To this end, through its Framework 5 programme, the EC has funded 50% of the Astrophysical Virtual Observatory, specifically to develop an advanced Virtual Observatory framework to enable European astronomical research.
[2]: GOODS (The Great Observatories Origins Deep Survey) is an international effort (on the ESO side, led by Catherine Cesarsky) that focuses on the coordination of deep space- and ground-based observations on a smaller, central area of the HDF-N and CDF-S in order to image the galaxies in many different spectral wavebands, from X-rays to radio.
[3]: In astronomy, the "redshift" denotes the factor by which the lines in the spectrum of an object are shifted towards longer wavelengths. Since the redshift of a cosmological object increases with distance, the observed redshift of a remote galaxy also provides an estimate of its distance.
More information
The paper describing these results has been accepted by the research journal Astronomy & Astrophysics ("Discovery of optically faint obscured quasars with Virtual Observatory tools" by P. Padovani et al.) and will be published in an upcoming issue. The paper can be downloaded from http://www.eso.org/~ppadovan/AVO-paper.pdf. The AVO web site is at http://www.euro-vo.org/.
Contacts
Paolo Padovani
ST-ECF/European Southern Observatory
Munich, Germany
Tel: +49 (0)89 320 06 478
Email: Paolo.Padovani@eso.org
About the Release
Release No.: | eso0418 |
Legacy ID: | PR 14/04 |
Name: | CXOCDFS J033229.9-275106 |
Type: | Unspecified : Technology |
Facility: | Very Large Telescope |
Instruments: | FORS1 |
Science data: | 2004A&A...424..545P |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.