Pressemitteilung
Planet in bewohnbarer Zone um nächstgelegenen Stern gefunden
Die Beobachtungskampagne "Pale Red Dot" entdeckt einen Planeten mit erdähnlicher Masse um den Stern Proxima Centauri
24. August 2016
Mit Teleskopen der ESO und anderen Einrichtungen ist es Astronomen gelungen, einen klaren Hinweis auf einen Planeten zu finden, der den nächsten Stern zur Erde, Proxima Centauri, umkreist. Dieser lang gesuchte Planet, genannt Proxima b, umkreist seinen kühlen, roten Mutterstern alle 11 Tage und besitzt eine Temperatur, die Wasser in flüssigem Zustand an der Oberfläche für möglich erscheinen lässt. Dieser Gesteinsplanet hat etwas mehr Masse als unsere Erde und ist der zu uns nächstgelegene extrasolare Planet - vielleicht ist er sogar der nächste Ort außerhalb unseres Sonnensystems, wo Leben existieren kann. Eine Publikation dieser epochalen Entdeckung erscheint am 25. August 2016 im Wissenschaftsmagazin Nature.
Gerade einmal vier Lichtjahre von unserem Sonnensystem entfernt liegt der rote Zwergstern Proxima Centauri, abgesehen von der Sonne ist er der nächste Stern zur Erde. Dieser kühle Stern im Sternbild Centaurus ist zu schwach, um mit bloßem Auge sichtbar zu sein. Zudem liegt er ganz nah an dem viel helleren Sternpaar Alpha Centauri AB.
Während der ersten Jahreshälfte 2016 wurde Proxima Centauri regelmäßig mit dem HARPS-Spektrografen am 3,6-Meter-Teleskop der ESO auf La Silla und gleichzeitig mit anderen Teleskopen rund um den Globus beobachtet [1]. Dies war die sogenannte Pale Red Dot-Kampagne, bei dem Astronomen unter der Leitung von Guillem Anglada-Escudé von der Queen Mary University in London nach jenen kleinen Bewegungen des Sterns suchten, die durch den gravitativen Einfluss eines ihn umkreisenden Planeten erzeugt würden [2].
Da dieses Thema in der Öffentlichkeit auf großes Interesse stößt, wurde zwischen Januar und April 2016 regelmäßig über den Fortschritt der Beobachtungen auf der Pale Red Dot-Webseite sowie in den sozialen Medien berichtet. Dazu gab es eine Reihe an populärwissenschaftlichen Beiträgen von Spezialisten aus aller Welt.
Guillem Anglada-Escudé erklärt den Hintergrund dieser außergewöhnlichen Suche: „Die ersten Hinweise auf einen möglichen Planeten wurden bereits 2013 entdeckt, aber die Ergebnisse waren nicht überzeugend. Seither haben wir mit Hilfe der ESO und anderen Partnern hart daran gearbeitet, weitere Beobachtungen durchführen zu können. Die Planung für unser nun durchgeführtes Red Pale Rot-Projekt dauerte fast zwei Jahre.“
Die Daten des Pale Red Dot-Projektes wurden mit früheren Beobachtungen von der ESO und anderen Observatorien kombiniert und ergaben so ein klares Signal – und überaus spannendes Ergebnis. Proxima Centauri bewegt sich regelmäßig mit etwa 5 Kilometer pro Stunde – normale Gehgeschwindigkeit – auf uns zu und wieder von uns weg. Dieses regelmäßige Muster der wechselnden Radialgeschwindigkeiten wiederholt sich mit einer Periode von 11,2 Tagen. Eine sorgfältige Analyse der Dopplerverschiebung im Spektrum des Sternes weist auf die Anwesenheit eines Planeten mit einer Mindestmasse von 1,3 Erdmassen in einer Entfernung von 7 Millionen Kilometern von Proxima Centauri hin – nur 5% des Abstands Erde-Sonne [3].
Anglada-Escudé erzählt über die Aufregung der letzten Monate: „Während der Pale Red Dot-Kampagne überprüfte ich jeden Tag die Konsistenz des Signals. Die ersten 10 Tage waren vielversprechend, die ersten 20 entsprachen den Erwartungen und nach 30 Tagen war das Resultat ziemlich klar, so begannen wir den Fachartikel zu schreiben!“
Rote Zwerge wie Proxima Centauri sind aktive Sterne und können durch ihre stellaren Veränderungen einen Planeten vortäuschen. Um dies auszuschließen beobachtete das Team auch die Veränderungen in der Helligkeit von Proxima Centauri mit dem ASH2-Teleskop am San Pedro de Atacama Celestial Explorations Observatory in Chile sowie mit dem Las Cumbres Observatory Global Telescope-Netzwerk. In der abschließenden Analyse wurden daher Radialgeschwindigkeitsdaten während der Zeit von Helligkeitsveränderungen des Sterns nicht zur Analyse herangezogen.
Zwar umkreist Proxima b seinen Mutterstern in geringerem Abstand als Merkur in unserem Sonnensystem die Sonne, aber Proxima Centauri ist viel schwächer als die Sonne. Aus diesem Grund liegt Proxima b gut innerhalb der habitablen Zone seines Muttersterns. Schätzungen seiner Oberflächentemperatur nach wäre das Vorhandensein von flüssigem Wasser möglich. Trotz seiner gemäßigten Umlaufbahn werden die Bedingungen an seiner Oberfläche stark von Ausbrüchen des Sterns im Ultravioletten und Röntgenbereich beeinflusst – in viel stärkerem Ausmaß als die Erde es von der Sonne erfährt [4].
Zwei zusätzliche Fachartikel diskutieren die Bewohnbarkeit und das Klima auf Proxima b. Sie kommen zu dem Ergebnis, dass das Vorhandensein von flüssigem Wasser derzeit nicht ausgeschlossen werden kann. In einem solchen Fall würde es nur in Regionen mit starker Sonneneinstrahlung vorkommen, entweder in einem Teil der Hemisphäre des Planeten, die ständig dem Stern zugewandt ist (gebundene Rotation) oder in einem tropischen Gürtel (Rotation mit 3:2-Resonanz). Die Eigenrotation von Proxima b, die starke Strahlung von seinem Mutterstern und die Entstehungsgeschichte des Planeten führen zu einem verglichen mit der Erde deutlich anderen Klima. Es ist äußerst unwahrscheinlich, dass es auf Proxima b Jahreszeiten gibt.
Diese Entdeckung ist der Beginn von einer Reihe weiterer Beobachtungen mit aktuellen Instrumenten [5] und mit der nächsten Generation von extrem großen Teleskopen wie des European Extremely Large Telescope (E-ELT). Proxima b wird in der Zukunft eines der wichtigsten Ziele für die Suche nach Leben im Universum sein. Und tatsächlich gibt es mit dem Projekt StarShot die Vision, das Alpha Centauri-System mit einen Raumfahrzeug von der Erde aus anzuvisieren.
Anglada-Escudé ergänzt: „Viele Exoplaneten wurde bisher gefunden und viele weitere werden in der Zukunft entdeckt werden, aber die Suche nach dem potentiell nächsten erdähnlichen Planeten war für uns alle eine einzigartige Erfahrung in unserem Leben. Es sind die Anstrengung vieler, die diese Entdeckung erst möglich machten. Ihnen allen sei Tribut und Ehre gezollt. Die Suche nach Leben auf Proxima b ist der nächste Schritt...“
Endnoten
[1] Die Arbeit beinhaltet neben Daten aus dem Pale Red Dot-Projekt auch Beiträge von Wissenschaftler/-innen, die Proxima Centauri über viele Jahre beobachteten. Dies sind u.a. Mitglieder des ursprünglichen UVES/ESO M-Zwerge-Programms (Martin Kürster und Michael Endl) und Exoplaneten-Pioniere wie R. Paul Butler. Öffentlich zugängliche Beobachtungen, die vom HARPS-Team aus Genf über viele Jahre gesammelt wurden, wurden ebenfalls einbezogen.
[2] Der Name Pale Red Dot bezieht sich auf Carl Sagans berühmten Ausspruch über die Erde als Pale Blue Dot. Da Proxima Centauri ein roter Zwergstern ist, taucht er den ihn umkreisenden Planeten in einen blass rötlichen Schein.
[3] Die jetzige Entdeckung ist seit 10 Jahren technisch möglich. Tatsächlich wurden Signale mit schwächeren Amplituden bereits früher entdeckt. Sterne sind jedoch keine glatten Gaskugeln und Proxima Centauri ist ein aktiver Stern. Die eindeutige Entdeckung von Proxima b war erst dadurch möglich geworden, nachdem man die Veränderungen des Sternes selbst vom Minutentakt bis zur ganzen Dekade im Detail verstanden hat, und zusätzlich die Helligkeit des Sternes mit photometrischen Teleskopen überwachen konnte.
[4] Inwieweit ein Planet dieser Art Wasser und erdähnliches Leben tatsächlich zulässt, ist eine intensive Debatte, die vorwiegend theoretisch geführt wird. Die größten Bedenken gegen eine Existenz von Leben betrifft die Nähe zum Mutterstern. Zum Beispiel würden Gravitationskräfte den Planeten mit guter Wahrscheinlichkeit in eine gebundene Rotation um den Stern zwingen, so dass eine Seite des Planeten stets Tag hätte, die andere in ewiger Dunkelheit verbliebe. Die Atmosphäre könnte langsam verdampfen, oder aufgrund der starken UV- und Röntgenstrahlung in der ersten Milliarde von Jahren eine viel komplexere Struktur als die auf unserer Erde aufweisen. Dennoch wurde bisher keines dieser Argumente überzeugend nachgewiesen, und es ist unwahrscheinlich, dass dies ohne direkte Beobachtung und Charakterisierung von Planetenatmosphären gelingen wird. Ähnliche Argumente betreffen die Planeten, die unlängst um TRAPPIST-1 entdeckt wurden.
[5] Einige Methoden zur Erforschung der Atmosphäre eines Planeten basieren auf der Transitmethode, in dem der Planet vor dem Stern vorbeizieht und Licht vom Stern durch die Atmosphäre des Planeten zur Erde gelangt. Derzeit besteht jedoch kein Hinweis darauf, dass Proxima b von der Erde aus gesehen vor der Scheibe seines Sternes vorbeizieht. Die Wahrscheinlichkeit dafür erscheint gering, aber Beobachtungen zur genauen Überprüfung dieser Möglichkeit sind im Gange.
Weitere Informationen
Die hier vorgestellten Forschungsergebnisse von G. Anglada-Escudé et al. erscheinen am 25. August 2016 unter dem Titel „A terrestrial planet candidate in a temperate orbit around Proxima Centauri” in der Fachzeitschrift Nature.
Die beteiligten Wissenschafter sind Guillem Anglada-Escudé (Queen Mary University of London, UK), Pedro J. Amado (Instituto de Astrofísica de Andalucía - CSIC, Granada, Spanien), John Barnes (Open University, Milton Keynes, UK), Zaira M. Berdiñas (Instituto de Astrofísica de Andalucia - CSIC, Granada, Spanien), R. Paul Butler (Carnegie Institution of Washington, Department of Terrestrial Magnetism, Washington, USA), Gavin A. L. Coleman (Queen Mary University of London, London, UK), Ignacio de la Cueva (Astroimagen, Ibiza, Spanien), Stefan Dreizler (Institut für Astrophysik, Georg-August-Universität Göttingen), Michael Endl (The University of Texas at Austin and McDonald Observatory, Austin, Texas, USA), Benjamin Giesers (Institut für Astrophysik, Georg-August-Universität Göttingen), Sandra V. Jeffers (Institut für Astrophysik, Georg-August-Universität Göttingen), James S. Jenkins (Universidad de Chile, Santiago, Chile), Hugh R. A. Jones (University of Hertfordshire, Hatfield, UK), Marcin Kiraga (Warsaw University Observatory, Warsaw, Poland), Martin Kürster (Max-Planck-Institut für Astronomie, Heidelberg), María J. López-González (Instituto de Astrofísica de Andalucía - CSIC, Granada, Spanien), Christopher J. Marvin (Institut für Astrophysik, Georg-August-Universität Göttingen), Nicolás Morales (Instituto de Astrofísica de Andalucía - CSIC, Granada, Spanien), Julien Morin (Laboratoire Univers et Particules de Montpellier, Université de Montpellier & CNRS, Montpellier, Frankreich), Richard P. Nelson (Queen Mary University of London, UK), José L. Ortiz (Instituto de Astrofísica de Andalucía - CSIC, Granada, Spanien), Aviv Ofir (Weizmann Institute of Science, Rehovot, Israel), Sijme-Jan Paardekooper (Queen Mary University of London, UK), Ansgar Reiners (Institut für Astrophysik, Georg-August-Universität Göttingen, Germany), Eloy Rodriguez (Instituto de Astrofísica de Andalucía - CSIC, Granada, Spanien), Cristina Rodriguez-Lopez (Instituto de Astrofísica de Andalucía - CSIC, Granada, Spanien), Luis F. Sarmiento (Institut für Astrophysik, Georg-August-Universität Göttingen), John P. Strachan (Queen Mary University of London, UK), Yiannis Tsapras (Astronomisches Rechen-Institut, Heidelberg), Mikko Tuomi (University of Hertfordshire, Hatfield, UK) und Mathias Zechmeister (Institut für Astrophysik, Georg-August-Universität Göttingen).
Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.
Links
- Fachartikel in Nature
- ESO-Pressekonferenz (01:02:26)
- Zwei zusätzliche Fachartikel zur Bewohnbarkeit von Proxima b
- Pale Red Dot-Blog
- Fotos vom VLT
- Fotos von HARPS und dem 3,6-Meter-Teleskop der ESO
- Video vom 3,6-Meter-Teleskop der ESO
- Fotos der LCOGT-Teleskope
- MPIA-Pressemitteilung
- LCOGT-Pressemitteilung
- Pressemitteilung der University of Hertfordshire
- Pressemitteilung des Laboratoire Univers et Particules de Montpellier
- Pressemitteilung des CNRS
- Zusätzliche Bilder und Videos von PHL @ UPR Arecibo
- Pressemitteilung der University of Texas/McDonald Observatory
- Youtube-Cartoon "Proxima Centauri b: The Earth Next Door"
Kontaktinformationen
Guillem Anglada-Escudé (Lead Scientist)
Queen Mary University of London
London, United Kingdom
Tel: +44 (0)20 7882 3002
E-Mail: g.anglada@qmul.ac.uk
Pedro J. Amado (Scientist)
Instituto de Astrofísica de Andalucía - Consejo Superior de Investigaciones Cientificas (IAA/CSIC)
Granada, Spain
Tel: +34 958 23 06 39
E-Mail: pja@iaa.csic.es
Ansgar Reiners (Scientist)
Institut für Astrophysik, Universität Göttingen
Göttingen, Germany
Tel: +49 551 3913825
E-Mail: ansgar.reiners@phys.uni-goettingen.de
James S. Jenkins (Scientist)
Departamento de Astronomia, Universidad de Chile
Santiago, Chile
Tel: +56 (2) 2 977 1125
E-Mail: jjenkins@das.uchile.cl
Michael Endl (Scientist)
McDonald Observatory, The University of Texas at Austin
Austin, Texas, USA
Tel: +1 512 471 8312
E-Mail: mike@astro.as.utexas.edu
Richard Hook (Coordinating Public Information Officer)
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: proxima@eso.org
Martin Archer (Public Information Officer)
Queen Mary University of London
London, United Kingdom
Tel: +44 (0) 20 7882 6963
E-Mail: m.archer@qmul.ac.uk
Silbia López de Lacalle (Public Information Officer)
Instituto de Astrofísica de Andalucía
Granada, Spain
Tel: +34 958 23 05 32
E-Mail: silbialo@iaa.es
Romas Bielke (Public Information Officer)
Georg August Universität Göttingen
Göttingen, Germany
Tel: +49 551 39-12172
E-Mail: Romas.Bielke@zvw.uni-goettingen.de
Natasha Metzler (Public Information Officer)
Carnegie Institution for Science
Washington DC, USA
Tel: +1 (202) 939 1142
E-Mail: nmetzler@carnegiescience.edu
David Azocar (Public Information Officer)
Departamento de Astronomia, Universidad de Chile
Santiago, Chile
E-Mail: dazocar@das.uchile.cl
Rebecca Johnson (Public Information Officer)
McDonald Observatory, The University of Texas at Austin
Austin, Texas, USA
Tel: +1 512 475 6763
E-Mail: rjohnson@astro.as.utexas.edu
Hugh Jones (Scientist)
University of Hertfordshire
Hatfield, United Kingdom
Tel: +44 (0)1707 284426
E-Mail: h.r.a.jones@herts.ac.uk
Jordan Kenny (Public Information Officer)
University of Hertfordshire
Hatfield, United Kingdom
Tel: +44 1707 286476
Mobil: +44 7730318371
E-Mail: j.kenny@herts.ac.uk
Yiannis Tsapras (Scientist)
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg
Heidelberg, Germany
Tel: +49 6221 54-181
E-Mail: ytsapras@ari.uni-heidelberg.de
Markus Nielbock (Pressekontakt Deutschland)
ESO Science Outreach Network
und Haus der Astronomie
Heidelberg, Deutschland
Tel: +49 6221 528-134
E-Mail: eson-germany@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1629de |
Name: | Proxima b, Proxima Centauri |
Typ: | Milky Way : Star : Circumstellar Material : Planetary System |
Facility: | ESO 3.6-metre telescope |
Instruments: | HARPS |
Science data: | 2016Natur.536..437A |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.