Pressemitteilung
Viele Milliarden Planeten in habitablen Zonen um rote Zwergsterne in der Milchstraße
28. März 2012
Neue Ergebnisse des ESO-Planetenjägers HARPS zeigen, dass felsige Planeten, die nicht viel größer als unsere Erde sind, ausnehmend häufig in den habitablen Zonen um schwach leuchtende rote Sterne vorkommen. Ein international besetztes Forscherteam schätzt ihre Anzahl alleine in der Milchstraße auf mehrere zehn Milliarden - einige hundert davon in unmittelbarer Nachbarschaft unserer Sonne. Dies ist die erste direkte Messung der Häufigkeit so genannter Supererden in Umlaufbahnen um rote Zwergsterne, einen Sterntyp, zu dem etwa 80% aller Sterne in der Milchstraße zählen.
Ein international besetztes Forscherteam hat die erste Abschätzung der Anzahl leichter Planeten veröffentlicht, die sich in Umlaufbahnen um rote Zwergsterne befinden. Das Team stützte sich dazu auf Beobachtungen, die mit dem HARPS-Spektrografen am 3,6-Meter Teleskop des La Silla- Observatoriums der ESO in Chile gewonnen wurden [1].
Die Untersuchung ergänzt eine andere, noch nicht lange zurück liegende Veröffentlichung (eso1204), in der die Zahl von Exoplaneten mit einer völlig anderen Methode abgeschätzt wurde. Damals konnte gezeigt werden, dass es insgesamt eine sehr große Zahl von Exoplaneten in der Milchstraße gibt. Die hier untersuchte sehr wichtige Klasse von Exoplaneten konnte auf diese Weise allerdings nicht erfasst werden.
Das HARPS-Team suchte nach Exoplaneten, die rote Zwergsterne (auch bekannt als M-Zwerge [2]) umkreisen – die häufigste Art von Sternen in der Milchstraße. Rote Zwerge haben im Vergleich zur Sonne deutlich niedrigere Oberflächentemperaturen. Sie sind jedoch sehr häufig und haben lange Lebensspannen. Daher machen sie 80% aller Sterne in der Milchstraße aus.
“Unsere neuen Beobachtungen mit HARPS zeigen, dass wohl etwa 40% aller roten Zwerge von einer Supererde umkreist werden, die sich in der habitablen Zone des Sterns befindet – also in dem Abstandsbereich, in dem flüssiges Wasser auf der Planetenoberfläche vorkommen”, so Xavier Bonfils vom IPAG - Observatoire des Sciences de l'Univers de Grenoble in Frankreich, der Leiter der Studie. “Weil rote Zwerge so häufig sind – in der Milchstraße gibt es etwa 160 Milliarden – führt uns das zu der erstaunlichen Schlussfolgerung, dass es alleine in unserer Milchstraße mehrere zehn Milliarden solcher Planeten gibt.”
Das HARPS-Team überwachte während einer sechsjährigen Beobachtungsphase 102 sorgfältig ausgewählte rote Zwerge am Südhimmel. Dabei fanden die Astronomen insgesamt neun Supererden (also Planeten mit Massen zwischen einer und zehn Erdmassen). Unter diesen Planeten waren auch zwei, die ihre Zentralgestirne – Gliese 581 (eso0915) und Gliese 667 C – innerhalb deren habitabler Zone umkreisen.
Die Forscher berechneten anschließend, wie häufig verschiedene Arten von Exoplaneten bei roten Zwergsternen sind: Dazu kombinierten sämtliche Beobachtungen, auch die von Sternen, bei denen keine Planeten gefunden wurden, und sie prüften auch nach, welcher Anteil der bereits bekannten Exoplaneten mit der neuen Methode hätte gefunden werden können. Das Ergebnis ist: Supererden [3] in der habitablen Zone der Zwergsterne kommen mit einer Häufigkeit von 41% vor. (Die Grenzen des Fehlerbereichs dieser Abschätzung liegen bei 28% und 95%.)
Massereiche Planeten wie die Gasriesen Jupiter und Saturn in unserem Sonnensystem kommen bei roten Zwergen dagegen nur selten vor: Weniger als 12% der roten Zwergsterne sollten den Abschätzungen des HARPS-Teams nach von Riesenplaneten – also Planeten mit 100 bis 1000-facher Masse der Erde – umkreist werden.
Da es auch in der Umgebung der Sonne viele rote Zwerge gibt, bedeutet die neue Abschätzung auch, dass es innerhalb von 30 Lichtjahren um das Sonnensystem etwa einhundert Supererden geben sollte, die ihren Zentralstern in der habitablen Zone umlaufen [4].
"Die habitable Zone eines roten Zwergs – also der Bereich, in dem flüssiges Wasser auf der Planetenoberfläche vorkommen kann – liegt viel näher am Zentralstern als die Bahn der Erde an der Sonne", erklärt Stéphane Udry vom Observatoire de Genève, ein weiteres Mitglied des Teams. "Wir wissen aber, dass rote Zwerge zu Helligkeitsausbrüchen neigen, so genannten Flares. Diese Flares würden die Planeten einer sehr intensiven Ultraviolett- und Röntgenstrahlung aussetzen. Die Existenz von Leben dürfte unter solchen Umständen sehr unwahrscheinlich sein."
Einer der im Rahmen der HARPS-Durchmusterung von roten Zwergsternen entdeckten Planeten trägt die Bezeichnung Gliese 667Cc [5]. Es handelt sich dabei um den zweiten bekannten Planeten in diesem Dreifach-Sternsystem; der erste Planet ist einer der in eso0939 beschrieben Funde. Seine Umlaufbahn scheint nahe der Mitte der habitablen Zone zu liegen. Obwohl dieser Planet mehr als die vierfache Masse der Erde besitzt, handelt es sich bei ihm doch um den bisher ähnlichsten “Zwilling” unserer Heimatwelt. Auf seiner Oberfläche herrschen mit großer Wahrscheinlichkeit Bedingungen, die das Vorkommen von flüssigem Wasser ermöglichen. Gliese 667Cc ist die zweite Supererde innerhalb der habitablen Zone eines roten Zwerges, die im Rahmen der HARPS-Durchmusterung gefunden wurde. Die erste derartige Supererde war Gliese 581d, deren Entdeckung 2007 bekannt gegeben wurde und 2009 bestätigt werden konnte.
“Wir wissen nun, dass viele rote Zwerge in der Nachbarschaft des Sonnensystems von Supererden umkreist werden dürften. Wir müssen sowohl HARPS als auch zukünftige Instrumente einsetzen, um diese Planeten in unserer Nachbarschaft tatsächlich nachzuweisen. Einige dieser Planeten sollten auf ihrer Bahn von der Erde aus gesehen vor ihrem Zentralstern vorüberziehen. Das würde uns die aufregende Gelegenheit geben, die Atmosphäre des jeweiligen Planeten zu untersuchen und nach Spuren von Leben zu fahnden”, schließt Xavier Delfosse, ebenfalls Mitglied des Teams (eso1210).
Endnoten
[1] HARPS misst die so genannte Radialgeschwindigkeit eines Sterns mit sehr großer Genauigkeit. Ein Planet, der den Stern umkreist, bewirkt typischer Weise, dass sich der Stern regelmäßig immer wieder auf einen Beobachter auf der Erde zu und von ihm weg bewegt. Durch den Dopplereffekt erzeugt diese Änderung der Radialgeschwindigkeit eine Verschiebung des Spektrums des Sterns zu längeren Wellenlängen (eine sogenannte Rotverschiebung) wenn sich der Stern vom Beobachter weg bewegt, und hin zu kürzeren Wellenlängen (Blauverschiebung), wenn er sich auf den Beobachter zu bewegt. Diese winzige Verschiebung der Wellenlängen im Spektrums des Sterns kann mit einem extrem genauen Spektrografen wie HARPS gemessen werden; über diesen Umweg lässt sich die Anwesenheit eines Exoplaneten nachweisen.
[2] Man nennt diese Sterne auch M-Zwerge, da sie der Spektralklasse M angehören. Dabei handelt es sich um die „kühlste“ der sieben Spektralklassen des
einfachsten Stern-Klassifikationsschemas, bei dem Astronomen Objekte absteigend nach Temperatur und nach dem Erscheinungsbild des jeweiligen Spektrums einordnen.
[3] Planeten mit einer Masse zwischen einer und zehn Erdmassen heißen Supererden. In unserem eigenen Sonnensystem gibt es keine Planeten dieses Typs. Bei anderen Sternen scheinen sie jedoch sehr häufig zu sein. Entdeckungen von Supererden innerhalb der habitablen Zone haben große Bedeutung, da diese Planeten, wenn sie von Wasser bedeckte Gesteinsplaneten ähnlich der Erde sind, prinzipiell Leben beherbergen könnten.
[4] Als Umgebung der Sonne definieren Astronomen unsere kosmische Nachbarschaft bis zu einem Abstand von zehn Parsec, entsprechend 32,6 Lichtjahren.
[5] Die Bezeichnung bedeutet, dass es sich um den zweiten bekannten Planeten handelt (daher der Buchstabe c), der die dritte Komponente (C) des Dreifach-Sternsystems Gliese 667 umkreist. Von Gliese 667Cc aus gesehen würden die Begleitsterne Gliese 667A und B strahlend hell am Himmel stehen. Eine unabhängige Entdeckung von Gliese 667Cc wurde von Guillem Anglada-Escudé und Kollegen bereits im Februar 2012 bekannt gegeben, etwa zwei Monate, nachdem die Vorabversion des Fachartikels von Bonfils und Kollegen online erschienen war. Die Bestätigung der Planeten Gliese 667Cb und Cc durch Anglada-Escudé und Kollegen beruhte dabei zu einem großen Teil auf HARPS-Beobachtungen und der Datenauswertung des europäischen Teams, die im wissenschaftlichen Archiv der ESO zugänglich gemacht worden waren.
Weitere Informationen
Die hier vorgestellten Forschungsergebnisse von Bonfils et al. erscheinen demnächst unter dem Titel “The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample” in der Zeitschrift Astronomy & Astrophysics.
Die beteiligten Wissenschaftler sind X. Bonfils (UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble, Frankreich [IPAG]; Observatoire de Genève, Schweiz), X. Delfosse (IPAG), S. Udry (Observatoire de Genève), T. Forveille (IPAG), M. Mayor (Observatoire de Genève), C. Perrier (IPAG), F. Bouchy (Institut d’Astrophysique de Paris, CNRS, Frankreich; Observatoire de Haute-Provence, Frankreich), M. Gillon (Université de Liège, Belgien; Observatoire de Genève), C. Lovis (Observatoire de Genève), F. Pepe (Observatoire de Genève), D. Queloz (Observatoire de Genève), N. C. Santos (Centro de Astrofísica da Universidade do Porto, Portugal), D. Ségransan (Observatoire de Genève), J.-L. Bertaux (Service d’Aéronomie du CNRS, Verrières-le-Buisson, Frankreich), and Vasco Neves (Centro de Astrofísica da Universidade do Porto, Portugal und IPAG).
Im Jahr 2012 feiert die Europäische Südsternwarte ESO (European Southern Observatory) das 50-jährige Jubiläum ihrer Gründung. Die ESO ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.
Links
- Fachartikel: Bonfils et al. und Delfosse et al.
- Fotos vom 3,6-Meter-Teleskop der ESO auf La Silla
Kontaktinformationen
Xavier Bonfils
Université Joseph Fourier - Grenoble 1/Institut de Planétologie et d’Astrophysique de Grenoble
Grenoble, France
Tel: +33 47 65 14 215
E-Mail: xavier.bonfils@obs.ujf-grenoble.fr
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org
Markus Nielbock (Pressekontakt Deutschland)
ESO Science Outreach Network
und Haus der Astronomie
Heidelberg, Deutschland
Tel: +49 6221 528-134
E-Mail: eson-germany@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1214de |
Name: | Exoplanets, Gliese 667 Cc |
Typ: | Milky Way : Planet |
Facility: | ESO 3.6-metre telescope, Very Large Telescope |
Instruments: | HARPS, UVES |
Science data: | 2013A&A...553A...8D 2013A&A...549A.109B |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.