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Exercise 1: The Permutation Group Sn

Recall from lecture

ordSn = n! , P =

(
1 2 3 · · · n
π1 π2 π3 · · · πn

)
, πi ∈ {1, 2, 3. . . . , n} , πi ̸= πj for i ̸= j

a) Cayley’s Theorem

Theorem: Every group of order n < ∞ is isomorphic to a subgroup of Sn

Proof: Let G := {g1, g2, . . . , gn}
⇒ left multiplication with a fixed g ∈ G corresponds to a row in Cayley’s table for G.
⇒ G = {gg1, gg2, . . . , ggn} =: {gπ1 , gπ2 , . . . , gπn} with πi ̸= πj for i ̸= j

⇒ ∃ isomorphism P :
G → H ⊂ Sn

g 7→ P (g) :=

(
1 2 3 · · · n
π1 π2 π3 · · · πn

)
Obviously for g1 ̸= g2 ⇒ P (g1) ̸= P (g2) as they correspond to different rows in group table.
In addition, P (g1)P (g2) = P (g1g2) as here gπi = g1(g2gi) = (g1g2)gi
⇒ H ≃ G and ordH = n ⇒ H is subgroup of Sn

Remarks:

� Cn ⊂ Dn ⊂ Sn for n ≥ 3
Cn and Dn are symmetry groups of regular n-polygon ⇒ permutations of edges

� As ordD3 = 6 = ordS3 ⇒ D3 ≃ S3

b) The Group S3

Let

e :=

(
1 2 3
1 2 3

)
, a :=

(
1 2 3
2 3 1

)
, b :=

(
1 2 3
3 1 2

)
,

c :=

(
1 2 3
1 3 2

)
, d :=

(
1 2 3
3 2 1

)
, f :=

(
1 2 3
2 1 3

)
.

1

2

3

d =⇒

2

3

1

rotation d ∈ D3 ⇔ a ∈ S3

1

2

3

s =⇒

1

3

2

reflexion s ∈ D3 ⇔ c ∈ S3

In general

D3 e d d2 s sd sd2

S3 e a b c f d

Show for the elements of S3: b
2 = a, cb = f and ca = d
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Conjugacy Classes:
Remember a class is defined by one element g ∈ G via

{g1gg−1
1 , g2gg

−1
2 , . . . , gngg

−1
n }

� {e} ≃ {e} obvious

� {d, d2} ≃ {a, b} follows from sd = d2s = d−1s

� {s, sd, sd2} ≃ {c, d, f} follows also from sd = d2s = d−1s

c) Decomposition into Cycles and Transpositions

Cycles: More efficient notation for an element of Sn

Examples:(
1 2 3 4 5 6 7 8
6 1 4 8 5 7 2 3

)
=

(
1 6 7 2 3 4 8 5
6 7 2 1 4 8 3 5

)
=: (1672)(348)(5)

(
1 2 3 4 5 6 7 8 9
3 5 4 1 8 9 6 7 2

)
= (134)(258769)

Cycles have no common elements ⇒ commute
Cycles with only one element are trivial and may be ommited

Transposition: Cycles with two elements [n1n2] := (n1n2)
Each cycle with k > 1 elements may be decomposed into an ordered product of k − 1
transpositions.

(n1n2 · · ·nk) = [n1nk][n1nk−1] · · · [n1n3][n1n2]

Proof by induction:
k = 2 obvious (see definition)

(n1n2 · · ·nknk+1) =

(
n1 n2 · · · nk−1 nk nk+1 · · ·
n2 n3 · · · nk nk+1 n1 · · ·

)
=

(
n1 n2 n3 · · · nk nk+1

nk+1 n2 n3 · · · nk n1

)(
n1 n2 n3 · · · nk nk+1

n2 n3 n4 · · · n1 nk+1

)
= (n1nk+1)(n1n2 · · ·nk)
= [n1nk+1][n1nk] · · · [n1n3][n1n2]

Conclusion: Each permutation may be decomposed into a product of transpositions

even permutations :⇔ even number of transpositions
odd permutations :⇔ odd number of transpositions

Show group homomorphism: Sn → C2

Example S3:

S3 Cycle transpositions even/odd

e ( ) [ ] even
a (123) [13][12] even
b (132) [12][13] even
c (23) [23] odd
d (13) [13] odd
f (12) [12] odd

d) The Alternating Group An

The set of even permutations forms a normal subgroup of Sn.
This subgroup is called alternating group An, ordAn = 1

2n!
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e) Generators of Sn

Obviously the transpositions generate the permutations.
Let

Pi := [i, i+ 1] = (i, i+ 1) =

(
1 2 · · · i i+ 1 · · ·
1 2 · · · i+ 1 i · · ·

)
, i = 1, 2, 3, . . . , n− 1

Then
Pi = P−1

i , P 2
i = e , PiPj = PjPi for |i− j| > 1

and
PiPi+1Pi = Pi+1PiPi+1

Graphical proof:

i i+ 1 i+ 2

Pi

Pi+1

Pi

i+ 2 i+ 1 i

i i+ 1 i+ 2

Pi+1

Pi

Pi+1

i+ 2 i+ 1 i

4



Exercise 2: The Braid Group Bn

Generators: {ε1, ε2, . . . , εn−1} ∈ Bn

with
εiεi+1εi = εi+1εiεi+1 , εiεj = εjεi for |i− j| > 1

but
εi ̸= ε−1

i , ε2i ̸= e

Interpretation: Set of all possible braids made out of n strips.
εi = exchange string i and i+ 1 counterclockwise

Graphical representation:

i i+ 1

i+ 1 i

εi ̸= ε−1
i

i i+ 1

i+ 1 i

i i+ 1

i i+ 1

ε2i ̸= e

i i+ 1

i i+ 1

i i+ 1 i+ 2

εi

εi+1

εi

i+ 2 i+ 1 i

εiεi+1εi = εi+1εiεi+1

i i+ 1 i+ 2

εi

εi+1

εi+1

i+ 2 i+ 1 i
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Remarks:

� If we assume that braids can penetrate each other ⇒ ε2i = e and ε−1
i = εi ⇒ Sn

� However Sn ⊈ Bn, i.e. Sn is NOT a subgroup of Bn

� B2 ≃ Z has only one generator ε1
all group elements are powers of ε1, ε

m
1 with m ∈ Z, ε01 =: e

m is the winding number and uniquely characterises an element of B2.
Z ≃ π1(S

1) fundamental group of the unit circle
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Exercise 3: Direct Product of Groups

Defintion: The direct product G1 ⊗G2 of two groups G1 and G2 forms a group

G1 ⊗G2 := {(g1, g2)|g1 ∈ G1, g2 ∈ G2}

if all elements of G1 commute with all elements of G2 and the group law is given by

(a1, a2)(b1, b2) := (a1b1, a2b2) ∀ ai, bi ∈ Gi

Remarks:

� Proof of group axioms see Lucha & Schöberl

� G1 and G2 are normal subgroups of G1 ⊗G2

� (g1, e2)(e1, g2) = (g1, g2) = (e1, g2)(g1, e2) elements g1 and g2 commute

� ordG1 ⊗G2 = ordG1 · ordG2

Example: V := C2 ⊗ C2 with V = {(e1, e2), (e1, d2), (d1, e2), (d1, d2)}, d2i = ei

V (e1, e2) (e1, d2) (d1, e2) (d1, d2)

(e1, e2) (e1, e2) (e1, d2) (d1, e2) (d1, d2)
(e1, d2) (e1, d2) (e1, e2) (d1, d2) (d1, e2)
(d1, e2) (d1, e2) (d1, d2) (e1, e2) (e1, d2)
(d1, d2) (d1, d2) (d1, e2) (e1, d2) (e1, e2)

Compare with D2 : e = (e1, e2), d = (e1, d2), s = (d1, e2), sd = (d1, d2)
⇒ D2 = C2 ⊗ C2 ≃ V ⇔ D2/C2 ≃ C2

But: D3/C3 ≃ C2 does NOT imply D3 ≃ C2 ⊗C3 as C2 is NOT a normal subgroup of D3.
In fact D3 ̸≃ C2 ⊗ C3. Why?

Semi-direct product: Like the direct product but here elements of G1 and G2 do not
commute ⇒ group law is more complicated.

Euclidean group: Transformations of R3 consisting of translations T 3 ≃ R3 and rotations
O(3) (including reflection, R ∈ O(3), detR = ±1)

E3 = T 3 ⊃× O(3)

Poincaré group: Transformations of R4, equipped with Minkowsky metric, consisting of
translations T 4 ≃ R4 and Lorentz transformations O(3, 1)

P = T 4 ⊃× O(3, 1)

*** End of Tutorial 1 ***
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