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Exercise 1: The Permutation Group 9,

Recall from lecture

1 2 3 -+ n

ord S, = n!, P=
T T T3 ot Tp

a) Cayley’s Theorem
Theorem: Every group of order n < oo is isomorphic to a subgroup of S,

Proof: Let G :={g1,92,--.,9n}
= left multiplication with a fixed g € G corresponds to a row in Cayley’s table for G.

= G =1991,992,--.,99n} = {Gr1+ Gras- - -+ Gm, } With m; # 7; for i # j

G—-HCS,
= 3 isomorphism P: 1 2 3 -+ n
P g— P(9) rz( >

T T T3 o+ Tp

Obviously for g1 # g2 = P(g1) # P(g2) as they correspond to different rows in group table.

In addition, P(g1)P(g2) = P(g192) as here g, = g1(929:) = (9192)9i
= H~GandordH =n = H is subgroup of S,

Remarks:

e C,CD,CS,forn>3
C, and D,, are symmetry groups of regular n-polygon = permutations of edges

e Asord D3 =6 =ordS3 = D3~ Ss3

b) The Group S;
Let
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c.—(132>, d:=

rotation d € D3 < a € S3
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S = reflexion s € D3 & c € S;3
1 3
In general
Ds|e d d®> s sd sd?
Ss ‘ e a b ¢ f d

Show for the elements of S3: b> =a, cb= f and ca = d

), m €4{1,2,3....,n}, m # mj for i # j



Conjugacy Classes:
Remember a class is defined by one element g € G via

{91997, 92995 "+ 999, "}
e {e} ~ {e} obvious
e {d,d?*} ~ {a,b} follows from sd = d*s = d~'s
e {s,5d,sd’} ~ {c,d, f} follows also from sd = d?s = d~'s

c) Decomposition into Cycles and Transpositions

Cycles: More efficient notation for an element of S,

Examples:
6 78\ (16 72
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35418967 2>:(134)(258769)

Cycles have no common elements = commute
Cycles with only one element are trivial and may be ommited

Transposition: Cycles with two elements [nins] := (nin2)

> —: (1672)(348)(5)

Each cycle with £ > 1 elements may be decomposed into an ordered product of k — 1

transpositions.
(ning -+ -ng) = [ning|[ning—1] - - - [nins][nins]

Proof by induction:
k = 2 obvious (see definition)
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= [nink][nang] - - - [nans][ning)]
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Conclusion: Each permutation may be decomposed into a product of transpositions

even permutations :< even number of transpositions
odd permutations :< odd number of transpositions

Show group homomorphism: S, — Cs

Example Ss:
Sz Cycle transpositions even/odd
e () [] even
a (123) [13][12] even
b (132) [12][13] even
c  (23) [23] odd
d (13) [13] odd
(12 [12] odd

d) The Alternating Group A,

The set of even permutations forms a normal subgroup of S,.
This subgroup is called alternating group A,, ord 4,, = %n!
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e) Generators of S,

Obviously the transpositions generate the permutations.

Let
. . 1 2 - ) i+1 - ) .
R.—[z,z+1]_(z,z+1)—<1 9 i il i ‘>, i=1,2,3,....n—1
Then
P=pr7', Pl=e, PPj=PP for |i—j|>1
and

PP 1Py = P (1 PP ‘

Graphical proof:
i 141 142 i 141 142

1+ 2 t+1 1 1+ 2 1+ 1 l



Exercise 2: The Braid Group B,

Generators: {¢1,¢€2,...,6n_1} € By,
with
Ei€i+1E; = €i+1Ei€i+1 Eiéj = €j6i for |’L — j| > 1
but
-1 2
& £ &, gj #e

Interpretation: Set of all possible braids made out of n strips.
g; = exchange string ¢ and ¢ + 1 counterclockwise

Graphical representation:
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Remarks:
e If we assume that braids can penetrate each other = 5? =e and 51-_1 =g =5,
e However S, QZ B, ie. S, is NOT a subgroup of B,

e By ~ 7 has only one generator 1
all group elements are powers of 1, e with m € Z, € =: e
m is the winding number and uniquely characterises an element of Bs.
7 ~ 71(SY) fundamental group of the unit circle



Exercise 3: Direct Product of Groups
Defintion: The direct product G1 ® G5 of two groups G1 and G2 forms a group
G1® G2 :={(g91,92)|91 € G1,92 € Ga}
if all elements of G; commute with all elements of G2 and the group law is given by
(a1,a2)(b1,b2) := (a1b1, azbs) Ya;b; € G;
Remarks:
e Proof of group axioms see Lucha & Schoberl
e (1 and (G are normal subgroups of G; ® Go

e (g1,e2)(e1,92) = (91,92) = (e1,92)(g1, e2) elements g; and go commute

e ordG1 ® G = ord G - ord G

Example: Vi=Cy®Cy with V = {(61, 62), (61, dg), (dl, 62), (dl,dg)}, dZQ =e€;
%4 ‘ (61, 62) (61, dg) (dl, 62) (dl, dg)
(e1,e2) | (e1,e2) (e1,d2) (di,e2) (di,d2)
(e1,d2) | (e1,d2) (er,e2) (d1,d2) (d1,e2)
(di,e2) | (di,e2) (di,d2) (e1,e2) (e1,d2)
(di,d2) | (d1,d2) (di,e2) (e1,d2) (e, e2)

Compare with Ds : e = (e1,e2), d = (e1,d2), s = (d1,e2), sd = (d1,d2)

= Dy =0Co0Cy~V & Dy/Cy ~ Co

But: D3/Cs3 ~ Cy does NOT imply D3 ~ Cy ® C5 as Cs is NOT a normal subgroup of Ds.
In fact D3 % Cy ® C5. Why?

Semi-direct product: Like the direct product but here elements of G; and G5 do not
commute = group law is more complicated.

FEuclidean group: Transformations of R? consisting of translations 7% ~ R3 and rotations
O(3) (including reflection, R € O(3), det R = +1)

E3=1T3%0(3)

Poincaré group: Transformations of R*, equipped with Minkowsky metric, consisting of
translations T# ~ R* and Lorentz transformations O(3,1)

P=T"'20(31)

*** Tnd of Tutorial 1 ***



