
4.6 Symmetries and Group Representations in Quantum Mechanics

4.6.1 Principles of Quantum Mechanics

States:

Physical System Σ ⇐⇒ Hilbert space H with
scalar product ⟨ψ|φ⟩

Pure States in Σ ⇐= normalised vector ⟨ψ|ψ⟩ = 1 in H
To each unit vector in H corresponds a pure state in Σ.
However, the reverse is not valid as all elements of

|ψ̂⟩ := {eiα|ψ⟩ ∈ H, eiα ∈ U(1)}

characterise the same state in Σ. |ψ̂⟩ is called ray in H.

Pure states of a quantum mechanical system are rays in Hilbert space H

Pure States in Σ ⇐⇒ ray |ψ̂⟩ ∈ H

a vector |ψ⟩ ∈ |ψ̂⟩ is called representative of ray |ψ̂⟩.
A ray is uniquely defined by one of its representatives.

Transition probability:
The transition probability between two states |ψ̂⟩ and |φ̂⟩ is given by

ω(ψ̂, φ̂) := |⟨ψ|φ⟩|2 , |φ⟩ ∈ |φ̂⟩ , |ψ⟩ ∈ |ψ̂⟩

Observables:

Measurement ⇐⇒ self-adjoint operators A
Possible measured values ⇐⇒ spectrum of A

Expectation value in state |ψ̂⟩ ⇐⇒ ⟨ψ|A|ψ⟩ , |ψ⟩ ∈ |ψ̂⟩
Dynamics:

Dynamics = Time evolution ⇐⇒ Hamilton operator H

iℏ
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩

Is
∂H

∂t
= 0 ⇒ |ψ(t)⟩ = exp{−(i/ℏ)H(t− t0)}|ψ(t0)⟩

For stationary states H|ψE⟩ = E|ψE⟩ follows

|ψE(t)⟩ = exp{−(i/ℏ)E(t− t0)}|ψE(t0)⟩

hence
|ψ̂E(t)⟩ = |ψ̂E(t0)⟩

4.6.2 Symmetries in Quantum Mechanics

Space-time, geometric symmetries
Passive View:
Fixed system Σ described by two observers with different ”coordinates”
Observer 1: |ψ̂1⟩, |φ̂1⟩ ,...
Observer 2: |ψ̂2⟩, |φ̂2⟩ ,...
Same state described by different rays |ψ̂1⟩, |ψ̂2⟩
⇒ there exists a mapping T̂ : H → H with |ψ̂2⟩ = T̂ |ψ̂1⟩

Active View:
Fixed ”coordinates” |ψ̂⟩, |φ̂⟩,...
System Σ invariant under transformations T̂ : H → H, that is, invariance of

ω(ψ̂, φ̂) := |⟨ψ̂|φ̂⟩|2 = |⟨T̂ ψ̂|T̂ φ̂⟩|2 and [H, T̂ ] = 0
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Internal, dynamical symmetries:
Invariance of ω(ψ̂, φ̂) and H

Definition:
A invariance or symmetry group is any group of transformations,

|ψ̂′⟩ = T̂ (g)|ψ̂⟩ , T̂ (g1)T̂ (g2) = T̂ (g1g2)

which leaves the transition probability ω(ψ̂, φ̂) and the Hamiltonian H invariant.

Wigner has shown that such transformations may always be replaced by transformations of
the corresponding vectors,i.e. |ψ′⟩ = U(g)|ψ⟩

Wigner theorem:
Let |ψ̂′⟩ = T̂ |ψ̂⟩ be a mapping T̂ : H → H with ω(ψ̂′, φ̂′) = ω(ψ̂, φ̂), then there exists a
mapping |ψ′⟩ = U |ψ⟩ of vectors H → H such that

|ψ⟩ ∈ |ψ̂⟩ ⇒ |ψ′⟩ ∈ |ψ̂′⟩ ∀ |ψ⟩ ∈ H

The mapping U has the properties

� U(|ψ⟩+ |φ⟩) = U |ψ⟩+ U |φ⟩ =: |Uψ⟩+ |Uφ⟩

� U(λ|ψ⟩) = χ(λ)U |ψ⟩ , λ ∈ C

� ⟨Uψ|Uφ⟩ = χ(⟨ψ|φ⟩)

where either χ(λ) = λ or χ(λ) = λ∗ for all λ ∈ C.

Hence U is either linear and unitary or anti-linear and anti-unitary

Proof: V. Bargmann, J. Math. Phys. 5 (1964) 862-868.

Comments:

� Only invariance of ω(ψ̂, φ̂) is required, not that for H!

� The operator U is unique up to a global (|ψ̂⟩-independent) phase. For rays one may
replace

T̂ → eiδU

For a group of transformations g ∈ G follows:

U(g1)U(g2) = eiθ(g1,g2)U(g1g2)

Such U is called ray representation ofG inH (or projective representation). For θ(g1, g2) = 0
the ray representation is reduced to the usual often called vector representation.

Conclusions from Wigner theorem:

� Each group of transformations on H leaving the transition probability ω(ψ̂, φ̂) invari-
ant is equivalent to a group of unitary or anti-unitary transformation U(g) forming a
ray representation.

� For group elements being continuously connected to the unit element e ∈ G, that is
continuous groups, U(g) is always unitary. Hence, finite-dimensional ray representa-
tions of simply connected groups are equivalent to vector representations.
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4.7 Examples

Invariance under Space Translations
Translation by vector a⃗: r⃗ ′ = T (⃗a)r⃗ := r⃗ + a⃗ with a⃗ ∈ R3

T (⃗a)T (⃗b) = r⃗ + a⃗+ b⃗ = T (⃗a+ b⃗)

Abelian group with 3 parameters.

Ray representation: T (⃗a) → U (⃗a) with |φ′⟩ = U (⃗a)|φ⟩
Position eigenstates: |r⃗′⟩ = U (⃗a)|r⃗⟩ := |r⃗ + a⃗⟩
Neutral element: T (⃗0) → U (⃗0)

Infinitesimal translation: U(δa⃗) = 1− i
ℏ P⃗ · δa⃗ with

P⃗ := iℏ
∂U

∂a⃗

∣∣∣∣
a⃗=0⃗

Note: As translations are abelian ⇒ [Pi, Pj ] = 0

Consider

U (⃗a+ δa⃗) = U (⃗a)

(
1− i

ℏ
P⃗ · δa⃗

)
⇒

U (⃗a+ δa⃗)− U (⃗a) = − i

ℏ
U (⃗a)P⃗ · δa⃗

⇒
∂U (⃗a)

∂a⃗
= − i

ℏ
U (⃗a)P⃗

Hence, the operator representing translation in R3 is unitary and given by

U (⃗a) = e−
i
ℏ P⃗ ·⃗a

and P⃗ can be identified with the momentum operator.
The momentum operator is the generator of translations.

Consider position representation:

⟨r⃗|(1− i
ℏδa⃗ · P⃗ )ψ⟩ = ⟨r⃗|U(δa⃗)ψ⟩

= ⟨U(−δa⃗)r⃗|ψ⟩
= ⟨r⃗ − δa⃗|ψ⟩
= ψ(r⃗ − δa⃗) = ψ(r⃗)− δa⃗ · ∇⃗ψ(r⃗)

⇒
P⃗ = ℏ

i ∇⃗ in position representation

Transformations of operators:

A′ = U (⃗a)AU †(⃗a) = e−
i
ℏ P⃗ ·⃗aA e+

i
ℏ P⃗ ·⃗a

Momentum operator: P⃗ ′ = U (⃗a)P⃗U †(⃗a) = P⃗ is invariant

Position operator: R⃗ ′ = U (⃗a)R⃗U †(⃗a)
!
= R⃗− a⃗ follows from ⟨r⃗|U (⃗a)ψ⟩ = ⟨r⃗ − a⃗|ψ⟩

Consider infinitesimal translation(
1− i

ℏ
P⃗ · δa⃗

)
R⃗

(
1 +

i

ℏ
P⃗ · δa⃗

)
= R⃗− δa⃗

⇒
Rj −

ℏ
i
δai[Pi, Rj ] = Rj − δaj

⇒
[Pi, Rj ] =

ℏ
i δij
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Hamiltonian: H ′ = U (⃗a)HU †(⃗a)
!
= H require invariance

⇒ [H,U (⃗a)] = 0 ⇒ [H, e−
i
ℏ P⃗ ·⃗a] = 0 for all a⃗ ∈ R3

⇒ [H,Pj ] = 0
momentum operator is conserved when system is invariant under translations

Time reversal invariance:
Let Θ be the time reversal operator with Θ|ψ(t)⟩ := |ψ(−t)⟩ obeying

|⟨Θψ|Θφ⟩|2 = |⟨ψ|φ⟩|2

Note: Θ2 = 1, Θ generates a group isomorphic to Z2

Consider below cycles of time evolution:

t

t
0

0

δt

−δt

Θ−1 ↓ ↑ Θ

Hence

Θe−
i
ℏHδt = e+

i
ℏHδtΘ

For small δt follows

Θ
(
1− i

ℏHδt
)
|ψ(0)⟩ =

(
1 + i

ℏHδt
)
Θ|ψ(0)⟩

⇒
−ΘiH|ψ(0)⟩ = iHΘ|ψ(0)⟩ for all |ψ(0)⟩ ∈ H

⇒
−ΘiH = iHΘ

Case 1: Θ is a linear operator: Θi = iΘ ⇒ HΘ = −ΘH
time reversal invariance implies H = −ΘHΘ−1 =: −H ′ = H
With E also −E is energy eigenvalue ⇒ H is not bounded from below  

So we are only left with the second option provided by Wigner

Case 2: Θ is anti-linear operator: Θi = −iΘ

⇒ [Θ, H] = 0 as expected

The time reversal operator is an anti-linear operator

Summary:

� Let G be a symmetry group of a given system Σ, g ∈ G.
Then in most cases the ray representation can be replaced by a unitary vector repre-
sentation

U(g1)U(g2) = U(g1g2) with |ψ⟩ → |ψ′⟩ = U(g)|ψ⟩

� Properties of the symmetry group

⟨φ′|ψ′⟩ = ⟨φ|U †(g)U(g)ψ⟩ = ⟨φ|ψ⟩

H ′ = U(g)HU †(g) = H ⇒ [U(g), H] = 0 ∀ g ∈ G
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� With H|ψE⟩ = E|ψE⟩ is also U(g)|ψE⟩ eigenvector for same energy eigenvlaue

⇒ eigenspaces of H are invariant representation spaces for G

The UIR of symmetry group may be used to classify the spectrum via conserved quan-
tum numbers. With not additional degeneracy each energy eigenvalue corresponds to
a UIR according to which the eigenstates are transformed.

4.8 The Lorentz Group

4.8.1 Minkowski space

Consider R4 with elements

x ∈ R4 , x = (x0, x1, x2, x3)T = (ct, x⃗)T = xµ

equipped with metric

g = (gµν) = (gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and a scalar product

⟨x, y⟩ := x0y0 − x⃗ · y⃗ = gµνx
µyν = gµνxµyν

Such a vector space is called Minkowsky space

4.8.2 Lorentz transformation

A (homogenous) Lorentz transformation of R4 is a linear map

Λ :
R4 → R4

x 7→ Λx i.e. xµ 7→ Λµνxν

with
⟨Λx,Λy⟩ = ⟨x, y⟩ for all x, y ∈ R4

This implies
gµνΛ

µ
ρx

ρΛνσx
σ = gρσx

ρyσ

or
ΛµρgµνΛ

ν
σ = gρσ ⇔ ΛT gΛ = g

This results in ten independent equations for the components of Λ like

(Λ0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2 = 1

Hence for all Λ
Λ0

0 ≥ 1 or Λ0
0 ≤ −1

The composition of two Lorentz transformations is again a Lorentz transformation and

det g = det(ΛT gΛ) = det g(detΛ)2 ⇒ detΛ = ±1

Hence Λ is invertible and the set of all Lorentz transformations forms a group called Lorentz
group denoted by

L = O(3, 1)

Only six of the sixteen elements of Λ can be chosen independently, that is, dimL = 6.
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Rotations:
Let R(ω⃗) ∈ SO(3) be a 3× 3-rotation matrix acting in R3 then

Λ(ω⃗) =

(
1 0⃗T

0⃗ R(ω⃗)

)
is a Lorentz transformation. Actually SO(3) ⊂ O(3, 1).

Boosts:
Let β⃗ ∈ R with β := |β⃗| ≤ 1 (note that β⃗ = v⃗/c) and

γ(β) :=
1√

1− β2

then

Λ(β⃗) =

 γ(β) γ(β)β⃗T

γ(β)β⃗ 13 +
γ(β)−1
β2 β⃗β⃗T


is a Lorentz transformation.
NOTE: The set of boost does NOT form a group, but the subset of boost into the same
direction forms a subgroup. (Proof!!!)
Let β⃗ = (β, 0, 0)T and γ(β) = γ then

Λ(β⃗) =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 and Λ(β⃗)x =


γc(t+ vx)
γ(x1 + vt)

x2

x3


with tanh θ := β, θ ∈ R is called the rapidity, we find

Λ(β⃗) =


cosh θ sinh θ 0 0
sinh θ cosh θ 0 0
0 0 1 0
0 0 0 1

 ∈ SO(1, 1)

Reflections:

P :=

(
1 0
0 −13

)
Time reversal:

T :=

(
−1 0
0 13

)
Connected Components of L = O(3, 1):

L↑
+ :=

{
Λ ∈ L|Λ0

0 ≥ 1 , detΛ = 1
}

proper LT

L↑
− :=

{
Λ ∈ L|Λ0

0 ≥ 1 , detΛ = −1
}
= PL↑

+

L↓
− :=

{
Λ ∈ L|Λ0

0 ≤ −1 , detΛ = −1
}
= TL↑

+

L↓
+ :=

{
Λ ∈ L|Λ0

0 ≤ −1 , detΛ = 1
}
= PTL↑

+

Any Λ ∈ L↑
+ can be put into the form Λ = Λ(β⃗)Λ(ω⃗)

SO(3, 1) = L↑
+ ∪ L↓

+ and L↑ = L↑
+ ∪ L↑

+ are subgroups of L = O(3, 1)
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4.8.3 The SO(3, 1) algebra

The generators of the Lorentz group are obtained from the neighborhood of the unit element
belonging to L↑

+.
Those for rotations are given by

Ji =

(
0 0
0 Li

)
where Li are the 3× 3 as given in Homework problem 10

Explicitly, they read

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , J2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , J3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 .

For the boost these generator read

K1 =


0 −i 0 0

−i 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 −i 0
0 0 0 0

−i 0 0 0
0 0 0 0

 , K3 =


0 0 0 −i
0 0 0 0
0 0 0 0

−i 0 0 0

 .

Note that, for example

J2
1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , K2
1 = −


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

and hence

eiωJ1 =


1 0 0 0
0 1 0 0
0 0 cosω sinω
0 0 − sinω cosω

 , eiβK1 =


coshβ sinhβ 0 0
sinhβ coshβ 0 0

0 0 1 0
0 0 0 1

 ,

An arbitrary element of L↑
+ is the generated by Λ(ω⃗, β⃗) = ei(ω⃗·J⃗+β⃗·K⃗) plus the P and T

matrices.

The generators obey the so(3, 1)-algebra

[Ji, Jj ] = iεijkJk , [Ji,Kj ] = iεijkKk , [Ki,Kj ] = −iεijkJk

The group SO(3, 1) is locally isomorphic to SL(2,C) =
{(

a b
c d

)
|a, b, c, d ∈ C, ad− bc = 1

}
.

Let J
(±)
i = 1

2(Ji ± iKi) then

[J
(±)
i , J

(±)
j ] = iεijkJ

(±)
k and [J (+)i , J (−)j ] = 0

That implies so(3, 1) → so(4) = so(3)⊕ so(3).
Hence the representations are given by the set (j+, j−) with j± = 0, 12 , 1, . . ..

With J⃗ = J⃗ (+) + J⃗ (−) and K⃗ = −i(J⃗ (+) − J⃗ (−)) the representation matrices are given by

D(j+,j−)(ω⃗, β⃗) = exp
{
i(ω⃗ − iβ⃗) · J⃗ (+) + i(ω⃗ + iβ⃗) · J⃗ (−)

}
Example: Spinor representation (12 , 0)

D( 1
2
,0)(ωe⃗3, 0⃗) = eiω

σ3
2 =

(
ei

ω
2 0

0 e−i
ω
2

)
, D( 1

2
,0)(⃗0, βe⃗3) = eβ

σ3
2 =

(
e

β
2 0

0 e−
β
2

)
More later.
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4.9 The Poincaré Group

Poincaré transformation:
The Poincaré transformation Π = (a,Λ), with Λ ∈ L and a ∈ R4, is a mapping defined by

Π :
R4 → R4

x 7→ Π(x) = Λx+ a

The set of all Poincaré transformations forms the Poincaré group P with composition law

(a1,Λ1)(a2,Λ2) = (a1 + Λ1a2,Λ1Λ2)

and therefore is the semi-direct product of the Lorentz group and the group of space-time
translations in Minkowsky space

P = R4 ⊃× L

Generators: Acting on L2(R4)

� Time translations: H = i∂0

� Space translations: P⃗ = −i∇⃗

� Rotations: J⃗ = −i(r⃗ × ∇⃗)

� Boosts: K⃗ = −i(r⃗∂0 + x0∇⃗)

⇒ 10 parameter group

Algebra:

[Ji, Jj ] = iεijkJk so(3) algebra

[Ki,Kj ] = −iεijkJk

[Ji,Kj ] = iεijkKk

 so(3, 1) algebra

[H,Pi] = [Pi, Pj ] = [H,Ji] = 0

[H, K⃗] = iP⃗

[Pk,Kl] = iHδkl

[Ji, Pj ] = iεijkPk



Poincarè algebra

In covariant notation

Pµ := (H, P⃗ ) , Mµν := xµP ν − xνPµ

the algebra reads

[Mµν ,Mρσ] = i (Mµσgνρ −Mνσgµρ +Mµρgνσ −Mνρgµσ)

[Mµν , P ρ] = i (gνρPµ − gµρP ν)

[Pµ, P ν ] = 0

Note following relations:

M0i = Ki , M ij = εijkJk , Mµν = −Mνµ ,

1
2M

µνMµν = J⃗2 − K⃗2 , MµνMρσεµνρσ = J⃗ · K⃗
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Casimirs: P has two Casimir operators

� Mass: PµPµ = m21

� Generalised spin: WµWµ = w21

Pauli-Lubanski operator:

Wµ := −1

2
εµνρσM

νρP σ

In rest system Pµ = (m, 0⃗) follows

Wµ = (J⃗ · P⃗ ,HJ⃗ − K⃗ × P⃗ ) = (0,mJ⃗) = m(0, J⃗)

Hence
w2 = −m2s(s+ 1)

That is, elementary particles are uniquely defined by their mass m and spin s. The asso-
ciated states transform under a certain (j+, j−)-representation of so(3, 1) which is finite-
dimensional but non-unitary. Any additional properties like charge, color, etc. are realised
by internal symmetries like gauge-invariance (Coleman-Mandula NoGo-Theorem).

4.10 Irreducible Representations of Lorentz Group

The Lorentz group is not compact. As a result the irreducible representations can be
classified in one of two possibilities.

� Finite dimensional but non-unitary representation.

� Infinite dimensional but unitary representation.

This is a deep statement and has far reaching consequences in the study of relativistic
quantum mechanics. In quantum field theories the field operators transform under certain
finite dimensional representations, while for the consistency of quantum mechanics, the
states must transform under certain unitary representation.

Finite-dimensional representations

Recall J
(±)
i = 1

2(Ji ± iKi) ⇒ (J
(±)
i )† = J

(∓)
i

Furthermore under parity transformation P : J⃗ → J⃗ but K⃗ → −K⃗ ⇒ J
(±)
i → J

(∓)
i

Hence for the reps (j+, j−) ⇒ (j−, j+) ⇒ only (j, j) reps are invariant under parity.
Or use parity doubling (j+, j−)⊕ (j−, j+)

Examples:

� (0, 0): Lorentz scalars (1-dim. trivial reps)

� (12 , 0): Right Weyl spinor (2-dim. parity is broken)

� (0, 12): Left Weyl spinor (2-dim. parity is broken)

� (12 , 0)⊕ (0, 12): Dirac spinor (4-dim. parity doubling)

� (12 ,
1
2): 4-vector reps (4-dim. fundamental reps, parity conserved)

� (1, 0)⊕ (0, 1): Anti-sym. two-tensor, e.g. Fµν (6-dim. parity doubling)

4.11 Irreducible Representations of Poincaré Group

Eigenstates of Casimir PµPµ and WµWµ span the representation space

PµPµ

∣∣∣∣ m w
p⃗ w3

〉
= m2

∣∣∣∣ m w
p⃗ w3

〉
, WµWµ

∣∣∣∣ m w
p⃗ w3

〉
= w2

∣∣∣∣ m w
p⃗ w3

〉
Pair of eigenvalues (m,w) define reps space and (p⃗, w3) enumerate the basis vectors
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In rest system WµWµ = −m2J⃗2 and W3 = −mJ3. Hence

WµWµ

∣∣∣∣ m w

0⃗ w3

〉
= −m2s(s+ 1)

∣∣∣∣ m w

0⃗ w3

〉
, W3

∣∣∣∣ m w

0⃗ w3

〉
= −ms3

∣∣∣∣ m w

0⃗ w3

〉
Wigner states:
A particle at rest is uniquely characterised by its mass m and spin s. A state with p⃗ ̸= 0⃗
can be generated via a Lorentz boost L(p) with pµ = L(p)µνkν , kν = (m, 0⃗).
We my change notation w → s and w3 → s3 to define the Wigner states:∣∣∣∣ m s

p⃗ s3

〉
= U(L(p))

∣∣∣∣ m s

0⃗ s3

〉
Properties:

U(Λ)

∣∣∣∣ m s
p⃗ s3

〉
=

s∑
s′3=−s

Ds
s′3 s3

(R(Λ, p))

∣∣∣∣ m s
Λp⃗ s′3

〉

U(a)

∣∣∣∣ m s
p⃗ s3

〉
= e−iP

µaµ

∣∣∣∣ m s
p⃗ s3

〉
Here Ds(R) is the 2s+ 1-dim. matrix representing the SU(2)-Wigner rotation R
Wigner rotation R(Λ, p) := L−1(Λp)ΛL(p) is a pure rotation

Orthogonality:〈
m s
p⃗ s3

∣∣∣∣ m′ s′

p⃗ ′ s′3

〉
= δmm′δss′δ(p⃗− p⃗ ′)δs3s′3 2

√
m2 + p⃗ 2

Lit.: S. Weinberg, The Quantum Theory of Fields I + II (CUP, 1995)

53


